প্রথম অধ্যায়

সেট ও ফাংশন

(Set and Function)

সেটের প্রাথমিক ধারণা মাধ্যমিক বীজগণিতে আলোচনা করা হয়েছে। এ অধ্যায়ে মাধ্যমিক বীজগণিতের অতিরিক্ত বিষয়বস্তু আলোচনা করা হলো:

অধ্যায় শেষে শিকাবীরা

- সার্বিক সেউ, উপসেউ, পূরক সেউ ও শক্তি সেউ গঠন করতে পারবে।
- বিভিন্ন সেটের সংযোগ, ছেল ও অন্তর নির্ণয় করতে পারবে ।
- সেট প্রক্রিয়ার ধর্মাবলির যৌক্তিক প্রমাণ করতে গারবে।
- সমতুল সেট বর্ণনা করতে পারবে এবং এর মাধ্যমে অসীম সেটের বারণা বাাধ্যা করতে পারবে ।
- সেটের সংযোগের শক্তি সেট নির্ণয়ের সূত্র ব্যাখ্যা করতে পারবে এবং ভেনচিত্র ও উদাহরণের সাহায্যে তা
 যাচাই করতে পারবে।
- সেট প্রক্রিয়া প্রয়োগ করে জীবনভিত্তিক সমস্যা সমাধান করতে পারবে ।
- সেটের সাহায্যে রিলেশন ও ফাংশন এর ধারণা ব্যাখ্যা করতে পারবে ।
- ফাংশনের ভোমেন ও রেঞ্চ নির্ণয করতে পারবে।
- এক-এক ফাংশন, সার্বিক ফাংশন ও এক-এক সার্বিক ফাংশন উদাহরণের সাহায্যে ব্যাখ্যা করতে পারবে।
- বিপরীত ফাংশন ব্যাখা করতে পারবে।

১-১ সেট

বাছব জগত বা চিন্তা জগতের বস্তুর যেকোনো সুনির্বাবিত সংগ্রহকে সেট বলা হয়। যেমন, Mathematics শব্দটি a,c,e,h,i,m,s,t অক্ষরতলোর সুনির্বারিত সংগ্রহ। তাই এটি Mathematics শব্দের অক্ষরসমূহের সেট এবং প্রত্যেকটি অক্ষর ঐ সেটের উপাদান। সেটকে আমরা ইংরেজি বড় হাতের অক্ষর দিয়ে প্রকাশ করি এবং এর উপাদানতলো বছনির () মাঝে আবদ্ধ করে উপাদানতলোকে আলাদা করার জন্য কমা ব্যবহার করা হয়। অর্থাৎ

$$M = \{a, c, e, h, i, m, s, t\}$$

আরো কয়েকটি উদাহরণ :

- (ব) ১ম দশটি অভগাত্মক সংখ্যাব সেট 'F' ছাবা বর্ণিত হলো : F = {0,1,2,3,4,5,6,7,8,9}.
- (খ) সপ্তাহের দিনগুলোর সেট D ছারা নির্দেশিত হলে, আমরা লিখতে পারি

$\Delta t < D = \{x : x \in \mathbb{N} \mid x \in \mathbb$

(ক) বছরের মাসঙলোর সেট।

বাজ : তালিকা প্রতিতে দেখ :

- (খ) দক্ষিণ এশিয়ার দেশ**ও**লোর সেট।
- (গ) স্বাভাবিক সংখ্যার সে**ট**।
- (য) বাংলাদেশের সরকারি গার্ক**তলোর সেট**।

সার্বিক সেট

সার্বিক সেট (Universal Set) আলোচনার জন্য নিচের সেটগুলো বিবেচনা করি $P = \{x: x \ \text{ ধনাত্মক পূর্ণসংখ্যা এবং } 5x \le 16\}$ $Q = \{x: x \ \text{ ধনাত্মক পূর্ণসংখ্যা এবং } x^2 < 20\}$ এবং $R = \{x: x \ \text{ ধনাত্মক পূর্ণসংখ্যা এবং } \sqrt{x} \le 2\}$ যা কেবল ধনাত্মক পূর্ণসংখ্যা ধারণ করে । এখন $U = \{x: x \ \text{ ধনাত্মক পূর্ণসংখ্যার সেট}\}$ বিবেচনা করি । তাহলে P, Q এবং R হলো U এর উপসেট এবং U কে বলা হয় সার্বিক সেট ।

নির্দিষ্ট সেটকে আলোচনাধীন সকল সেটের সার্বিক সেট বলা হয়।

উপসেট (Subset)

 $P=\{1,2,3\}$, $Q=\{1,2,3,4\}$ এবং $R=\{1,2,3,4\}$ সেট বিবেচনা করলে দেখা যায় P এর প্রতিটি উপাদান R এর উপাদান, অর্থাৎ $x\in P\Rightarrow x\in R$. P সেটটিকে R সেটের উপসেট বলা হয় এবং লেখা হয় $P\subseteq R$. অনুরূপভাবে Q সেটের প্রতিটি উপাদান R সেটের উপাদান অর্থাৎ, $x\in Q\Rightarrow x\in R$ সুতরাং Q কে R সেটের উপসেট বলা হয় এবং লেখা হয় $Q\subseteq R$. P ও Q সেটছয়কে R সেটের উপসেট হওয়া সম্ভেও এদের মধ্যে পার্থক্য বিদ্যমান । এখানে, উলেখ্য যে, n(P)=3 এবং n(R)=4, যেখানে n(S) হচ্ছে S সেটের উপাদান সংখ্যা । P কে R এর প্রকৃত উপসেট বলা হয় এবং লেখা হয় $P\subset R$. যেকোনো সেট A এর জন্য

- (i) A ⊂ A
- (i) Φ ⊆ A (ফাঁকা সেট Φ যেকোনো সেটের উপসেট)
 যদি A সেট, সসীম সেট B এর উপসেট হয় i.e.A ⊆ B তখন n(A) ≤ n(B)
 যদি A সেট, সসীম সেট B এর প্রকৃত উপসেট i.e.A ⊂ B তখন n(A) < n(B).
 দুটবা: ∠ চিহ্ন অর্থ উপসেট নয় এবং ∠ এর অর্থ প্রকৃত উপসেট নয়।

পুরক সেট (Complement Set)

বিবেচনা করা যাক $U=\{x:x \;\;$ ধনাত্মক পূর্ণসংখ্যা $\}$ এবং $P=\{1,2,3\}$ । সেট $P'=\{x:5x>16\}$ সংজ্ঞায়িত করা হলো যার কোনো উপাদান P সেটে নেই । সুতরাং $P'=\{4,5,6,....\}$ এবং একে বলা হয় পূরক সেট । তদুপ, $Q=\{1,2,3,4\}$ সেটের জন্য পূরক সেট $Q'=\{5,6,7,.....\}$. যদি U সার্বিক সেট হয়, তবে P সেটের পূরক সেট $P'=\{x:x\not\in P,x\in U\}$.

উদাহরণ ১। দেওয়া আছে $U = \{x: x \quad \text{পূর্বসংখ্যা, } 0 < x \le 10\}, A = \{x: 2x > 7\}$ এবং $B = \{x: 3x < 20\}$ এখান থেকে (a) সেট A ও A' (b) সেট B ও B' এর উপাদনগুলো তালিকা পদ্ধতিতে প্রকাশ কর।

কোনটি সত্য বা মিথ্যা বল :i) $A'\subseteq B,\ ii)$ $B'\subseteq A,\ iii)$ $A\not\subset B$

সমাধান : $U = \{1,2,3,4,5,6,7,8,9,10\}$

$$(a)A = \{x : 2x > 7\} = \{4,5,6,7,8,9,10\}$$

(b)
$$B = \{x: 3x < 20\} = \{1,2,3,4,5,6\}$$

$$B' = \{7.8.9.10\}$$

∴ A'

B সতা, B'

A মিখা এবং A

B সতা

শক্তি সেট (Power Set)

কোনো সেট A এর সকল উপসেটের সেটকে A এর শক্তি সেট বা পাওয়ার সেট বলা হয় এবং একে P(A) দ্বারা প্রকাশ করা হয়।

যেমন, $A = \{1.2.3.\}$ হলে, A এর শক্তি সেট,

$$P(A) = {\Phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}}.$$

লক্ষণীয় যে, P(A) এর উপাদানগুলো প্রত্যেকেই সেট A এর উপসেট।

দ্রষ্টব্য : $B \in P(A)$ বললে বুঝতে হবে $B \subseteq A$, কোনো আলোচনায় সার্বিক সেট U ধরা হলে, ঐ আলোচনায় বিবেচিত প্রত্যেক সেট P(U) এর সদস্য।

যদি কোনো সেটের উপাদান সসীম হয়, ধরা যাক ঐ সেটে n সংখ্যক উপাদান আছে, তাহলে উক্ত সেটটির শক্তি সেটে 2^n সংখ্যক উপাদান থাকবে ।

কাজ :

- ১। দেওয়া আছে U = {1,2,3,4,5,6,7,8,9,10} নিচের সেটঙলো তালিকা পদ্ধতিতে প্রকাশ কর :
 - (a) $A = \{x : 5x > 37\}$
 - (b) $B = \{x : x + 5 < 12\}$
 - (c) $C = \{x : 6 < 2x < 17\}$
 - (d) $D = \{x : x^2 < 37\}$
- ২। দেওয়া আছে $U = \{x : 1 \le x \le 20, x \in Z^+\}$.

নিচের সেটগুলো তালিকা পদ্ধতিতে প্রকাশ কর:

- (a) A = {x:x, 2 এর গুণিতক}(b) B = {x:x,5 এর গুণিতক}
- (c) C = {x:x, 10 এর গুণিতক}

প্রদত্ত তথ্যের আলোকে নিচের কোনগুলো সত্য বা মিথ্যা বল

$$C \subset A, B \subset A, C \subset B$$

থা বদি A = {a,b,c,d,e} হয়, তবে P(A) নির্ণয় কর।

ভেনচিত্র (Venn Diagram)

চিত্রে P = {1,2,3} } এবং Q = {1,2,3,4} সেটের মধ্যে সম্পর্ক হলো P ⊆ Q.

কোনো সেটের একাধিক উপসেটের মধ্যে এরপ সম্পর্ক নির্দেশ করতে যে জ্যামিতিক চিত্র ব্যবহার করা হয়, তাই ভেনচিত্র।

সাধারণত আয়তক্ষেত্র দ্বারা সার্বিক সেট বুঝানো হয়। বৃত্তাকার বা ত্রিভুজাকার ক্ষেত্র উপসেট বোঝাতে ব্যবহার করা হয়। নিচের ভেনচিত্রে চিত্র-১ এ সার্বিক সেট $U = \{x: x \ পূর্ণসংখ্যা, \ 0 < x \le 10\},$

সেট $A = \{x: 2x > 7\}$ এবং $A' = \{x: 2x \le 7\}$ দেখানো হলো।

প্রতিসেটের সংখ্যা তালিকাবদ্ধ করার পরিবর্তে চিত্র ২ এর অনুরূপ করে প্রতি সেটের উপাদানগুলো লিখতে পারি। যখন আমরা লিখি n(A): অর্থাৎ আমরা অনুমান করি যে, A সসীম সেট।

যদি U সার্বিক সেট এবং A যেকোনো সেট তখন লিখতে পারি n(A)+n(A')=n(U)

উদাহরণ ২। দেওয়া আছে $U=\{x: 2 \le x \le 30, x \in Z^+\}$ এবং $P=\{x: x$ হলো 30 এর উৎপাদক $\}$

- (a) P সেটের উপাদানগুলো তালিকা পদ্ধতিতে লিখ
- (b) P' সেটের বর্ণনা দাও
- (c) n(P') নির্ণয় কর

সমাধান: (a) P = {2, 3, 5, 6, 10, 15, 30}

- (b) P' = {x:x, 30 এর উৎপাদক নয়}
- (c) n(P') = n(U) n(P)= 29 - 7 : n(P') = 22

সেটের সংযোগ

ইংরেজি বর্ণমালা নিয়ে সার্বিক সেট ও দুইটি উপসেট যথাক্রমে $E = \{e, n, g, l, i, s, h\}$ এবং $H = \{h, i, s, t, o, r, y\}$ (a) ভেনচিত্রে সার্বিক সেট U, E এবং H কে চিহ্নিত কর

(b) সেট E ∪ H = {x : x ∈ E অথবা x ∈ H} এর উপাদানগুলো তালিকা পদ্ধতিতে প্রকাশ কর

সমাধান: (a) তেন চিত্র

(b) ভেনচিত্র হতে পাই,
$$\{x : x \in E \text{ অথবা } x \in H\}$$

= $\{e, n, g, l, i, s, h, t, o, r, y\}$

লক্ষ করি : সেটটি $\{x: x \in E \text{ অথবা } x \in H\} = \{e, n, g, l, i, s, h, t, o, r, y\}$

E এবং H সেটের সকল উপাদান নিয়ে গঠিত সেট যাকে সংযোগ সেট বলা হয় এবং E ∪ H প্রতীকের মাধ্যমে প্রকাশ করা হয়

অর্থাৎ, $E \cup H = \{x : x \in E$ অথবা $x \in H\}$

উদাহরণ ৩। সার্বিক সেট ও দুইটি উপসেট দেওয়া হলো

$$U = \{2,3,4,5,6,7,8,9\}$$

 $A = \{x : x$ মৌলিক সংখ্যা $\}$

 $B = \{x : x \text{ বিজোড় সংখ্যা}\}$

- (a) A, B ও A ∪ B সেটের উপাদানগুলো তালিকাবদ্ধ কর :
- (b) ভেনচিত্রে A ∪ B দেখাও
- (c) সেট A ∪ B ও সেট A ∪ B' এর উপাদানগুলো তালিকা পদ্ধতিতে প্রকাশ কর।

সমাধান: (a)A = {2,3,5,7}, B = {3,5,7,9} এবং A UB = {2,3,5,7,9}

(c) $A \cup B = \{x : x \in A \text{ at } x \in B\} = \{2,3,5,7,9\}$ $(A \cup B)' = \{4,6,8\}$

সেটের ছেদ

ইংরেজি বর্ণমালার অক্ষরগুলো সার্বিক সেট এবং দুইটি উপসেট

 $A = \{e, n, g, l, i, s, h\}$ এবং $B = \{h, i, s, t, o, r, y\}$ সংজ্ঞায়িত করি।

তাহলে সেট $\{x: x \in A \text{ এবং } x \in B\} = \{i, s, h, \}$. যা A এবং B সেটের সকল সাধারণ উপাদান নিয়ে গঠিত। এভাবে গঠিত সেটকে A ও B সেটের ছেদ সেট বলা হয় এবং $A \cap B$ লিখে প্রকাশ করা হয়। অর্থাৎ, $A \cap B = \{x: x \in A \text{ এবং } x \in B\}$

অনুরূপভাবে আমরা পাই.

$$A \cap B' = \{x : x \in A \text{ say } x \in B'\} = \{e, n, g, l\}.$$

$$A' \cap B = \{x : x \in A' \text{ are } x \in B\} = \{t, o, r, y\}.$$

$$A' \cap B' = \{x : x \in A' \text{ and } x \in B'\}$$

$$= \{a,b,c,d,f,j,k,m,p,q,u,v,w,x,z\}.$$

নিচের ভেনচিত্রে উপরের সেটগুলো দেখানো হলো :

উদাহরণ 8 : দেওয়া আছে $U = \{1,2,3,4,5,6,7,8,9\}$, $A = \{2,4,6,8\}$, $B = \{4,8\}$ এবং $C = \{1,3,5,6\}$

ভেনচিত্র অংকন কর (a) $A \cap B$ এবং $A \cap B'$

সমাধান : (a) যেহেতু $B \subseteq A$

$$A \cap B = B = \{4,8\}$$

$$A \cap B' = A = \{2, 6\}$$

(b)
$$B \cap C = \{\}$$

$$B' \cap C' = B = \{2,7,9\}$$

a b c d f j k m p q u v w x z

U

উক্ত উদাহরণ থেকে পাই $B \cap C = \{\}$ অতএব সেট B ও C কে বলা হয় নিশ্ছেদ সেট।

A ও B সেটছরা নিম্ছেদ $\Leftrightarrow A \cap B = \Phi$

উদাহরণ ৫ । $U=\{p,q,r,s,t,u,v,w\},\ A=\{p,q,r,s\},\ B=\{r,s,t\}$ ও $C=\{s,t,u,v,w\}$

- (a) $A\cap B,$ $B\cap C$ এবং $C\cap A$ এর উপাদানগুলো তালিকা পদ্ধতিতে লিপিবদ্ধ কর এবং ভেনচিত্রে দেখাও
- (b) $A \cap B \cap C$ এর উপাদানগুলো তালিকা পদ্ধতিতে প্রকাশ কর :

সমাধান :
$$(a) A \cap B = \{r, s\}$$

$$B \cap C = \{s,t\}$$

$$C \cap A = \{s\}$$

(b)
$$A \cap B \cap C = \{r,s\} \cap C = \{r,s\} \cap \{s.t.u.v,w\}$$

= $\{s\}$

উদাহরণ ৬। দেওয়া আছে U সার্বিক সেট এবং $A \cap B = \Phi$ ভিন্ন ভিন্ন ভেনচিত্রে নিচের সেটগুলো আচ্ছাদিত কর:

- (a) A ∩ B
- (b) A'∩B
- (c) A ∩ B'
- (d) A'∩B'

দেখাও যে, $n(A \cap B) + n(A' \cap B) + n(A \cap B') + n(A' \cap B') = n(U)$ সমাধান :

(a) A ∩ B

(b) A' ∩ B

(c) A ∩ B'

(d) A' ∩ B'

ভেনচিত্রে সার্বিক সেট $\,U\,$ এর প্রতিটি উপসেট এর সদস্য সংখ্যা দেখানো হয়েছে এখান থেকে আমরা পাই,

 $n(A \cap B) + n(A' \cap B) + n(A \cap B') + n(A' \cap B') = n(U)$ সার্বিক সেট U এর যেকোনো দুইটি উপসেটের ক্ষেত্রে লেখা যায়

$$n(A\cap B) \,+\, n(A'\cap B) + n(A\cap B') + n(A'\cap B') = n(U)$$

উদাহরণ ৭। ভেনচিত্রে গাঢ় করে দেখাও

সমাধান :

উদাহরণ ৮। $U=\{2,3,4,5,6,7,8,9,10\}$, $A=\{x:x$ জোড়সংখ্যা $\}$

এবং
$$B = \{x : 7 < 3x < 25\}$$

(a) A, B, A ∩ B, A ∪ B এবং A ∩ B' এর উপাদানগুলো তালিকা পদ্ধতিতে লেখ ।

- (b) x এর উপাদানওলো বাহির কর যেন, x ∈ A এবং x ∉ B
- (c) x এর উপাদানগুলো বাহির কর যেন x ∉ A এবং x ∉ B

সমাধান : (a)
$$A = \{2,4,6,8,10\}$$
 $A \cap B = \{4,6,8\}$ $B = \{3,4,5,6,7,8\}$ $A \cup B = \{2,3,4,5,6,7,8,10\}$ $A \cap B' = \{2,10\}$

(b) x ∈ A এবং x ∉ B
 ⇔ x ∈ A এবং x ∈ B'
 ⇔ x ∈ A ∩ B'
 ∴ x = 2,10

(c) x ∉ A এবং x ∉ B

⇔ x ∈ A' এবং x ∈ B'

⇔ x ∈ A' ∩ B' = {9}

∴ x = 9

উদাহরণ \mathbf{b} । ভেনচিত্রে সার্বিক সেট U এর প্রতিটি উপসেটের উপাদান সংখ্যা দেখানো হয়েছে। এখানে উল্লেখ্য যে, $U = A \cup B \cup C$.

- (a) দেওয়া আছে n(B) = n(C) এবং এখান থেকে x এর মান নির্ণয় কর।
- (b) দেওয়া আছে n(B ∩ C) = n(A ∪ B') এবং এখান থেকে y এর মান নির্ণয় কর
- (a) n(U) কত?

সমাধান : (a) n(B) = n(C)

$$x+3+y=y+8$$

$$x = 5$$

(b) $n(B \cap C) = n(A \cup B')$

$$v = 6$$

(c) n(U) = 6 + x + 3 + y + 8= 6 + 5 + 3 + 6 + 8= 28

১। দেওয়া আছে যে, $U = \{1,2,3,4,5,6,7,8,9\}$ এবং $A = \{x : x, 3 \text{ এর গুণীতক}\}$. দেখাও যে,

U

কাজ :

- দেওয়া আছে যে, U = {1,2,3,4,5,6,7,8,9} এবং A = {x:x, 3 এর গুণীতক}. দেখাও যে,

 - (a) $A \cup A' = U$ (b) $A \cap A' = \Phi$
- দওয়া আছে U = {3,4,5,6,7,8,9}, A = {x:x মৌলিক সংখ্যা} এবং B = {x:x জোড় সংখ্যা}। ভেনচিত্রের সাহায্যে সেট A এবং $A \cap B$ এর উপাদানগুলোর তালিকা তৈরি কর।
 - দেখাও যে, (a) A'∩B' = {9}
- (b) A ⊆ B' এবং A ⊆ A'.
- ত। ভেনচিত্রে A ও B সেটের উপাদানগুলো দেখানো হলো।

দেওয়া আছে, $n(A) = n(A' \cap B)$ তাহলে

- (b) n(A) ও n(B) এর মান নির্ণয় কর ।
- 8 | $U = \{p,q,r,s,t,u,v,w\}, A = \{p,q,r,s\}$

 $B = \{r, s, t\}$ এবং $C = \{s, t, u, v, w\}$

- (a) n(A∪B) = কত?
- (b) (A∪B)' এবং A∪B∪C এর উপাদানগুলোর তালিকা তৈরি কর ι
- ৫। ভেনচিত্রে গাঢ় (Shade) করে দেখাও : (a) (P ∩ Q) ∩ R'
- (b) (A ∩ B') ∪ C

সেট প্রক্রিয়ার ধর্মাবলি

ইতোপূর্বে সেটের সংযোগ, ছেদ এবং নিশ্ছেদ সেট সম্পর্কে আলোচনা করা হয়েছে। এখানে এদের ধর্মাবলি সম্পর্কে আলোচনা করা হলো :

সংযোগ ও ছেদ সেটের ধর্মাবলী :

প্রতিজ্ঞা ১। বিনিময় নিয়ম ((Commutative law))

মনে করি, $A = \{1,2,4\}$ এবং $B = \{2,3,5\}$ দুইটি সেট। তাহলে

$$= \{1,2,4,3,5\}$$

$$B \cup A = \{2,3,5\} \cup \{1,2,4\}$$

$$= \{2,3,5,1,4\}$$

 $A \cup B = \{1,2,4\} \cup \{2,3,5\}$

 $A \cup B = \{x : x \in A \ \text{T} \ x \in B\}$

যেহেতু $A \cup B$ এবং $B \cup A$ এ প্রকৃত পক্ষে একই উপাদানগুলো বিদ্যমান।

অতএব, $A \cup B = B \cup A$

একইভাবে আবার, $A = \{a,b,c\}$ এবং $B = \{b,c,a\}$ নিয়ে দেখানো যায় $A \cup B = B \cup A$

সাধারণত যেকোনো দুইটি সেট A এবং B ক্ষেত্রে দেখানো যায়

$$A \cup B = B \cup A$$

এটিই সংযোগ সেটের বিনিময় বিধি।

সেটের সংযোগ সেটের বিনিময় বিধি মেনে চলে।

দ্রষ্টব্য : অনুরূপভাবে ছেদ প্রক্রিয়ায় বিনিময় বিধি

$$A \cap B = B \cap A$$

প্রতিজ্ঞা ২। সহযোজন নিয়ম (Associative law)

এ নিয়মটি বুঝার জন্য ভেনচিত্র ব্যবহার করা হলো। ধরি A,B ও C তিনটি সেট

 $A \cup B$ হলো গাঢ় অংশটুকু

 $(A \cup B) \cup C$ হলো গাঢ় অংশটুকু

ভেনচিত্র a(ii) এবং b(ii) থেকে এটা পরিষ্কার যে, $A \cup (B \cup C) = (A \cup B) \cup C$ এ নিয়মটিই $A = \{a,b,c,d\}$, $B = \{b,c,f\}$ এবং $C = \{c,d,g\}$ তিনটি সেট নিয়ে বুঝার চেষ্টা করি এখানে $B \cup C = \{b,c,f\} \cup \{c,d,g\}$

$$= \{b, c, f, d, g\}.$$

এবং $A \cup (B \cup C) = \{a,b,c,d\} \cup \{b,c,f,d,g\}$

$$= \{a, b, c, d, f, g\}$$
....(i)

এখন, $A \cup B = \{a, b, c, d\} \cup \{b, c, f\}$

$$= \{a, b, c, d, f\}$$

এবং $(A \cup B) \cup C = \{a, b, c, d, f\} \cup \{c, d, g\}$

$$= \{a,b,c,d,f,g\}....(ii)$$

(i) ও (ii) হতে আমরা পাই, A∪(B∪C)=(A∪B)∪C
 সাধারণত, যেকোনো তিনটি সেট A, B ও C এর জন্য

$$A \cup (B \cup C) = (A \cup B) \cup C$$

 \therefore সেটের সংযোগ প্রক্রিয়া সহযোজন নিয়ম মেনে চলে। অনুরূপভাবে ছেদ প্রক্রিয়া সহযোজন নিয়ম মেনে চলে অর্থাৎ, $A \cap (B \cap C) = (A \cap B) \cap C$

একইভাবে $A = \{x, y, z\}$ নিয়ে দেখানো যায় যে, $A \cup A = A$

∴ সিদ্ধান্ত : যেকোনো সেট A এর জন্য

$$A \cup A = A$$

একইভাবে নিজে কর : $A \cap A = A$

প্রতিজ্ঞা 8। যদি $A \subset B$ তখন $A \cup B = B$.

ধরি, $A = \{1,2,3\}$ এবং $B = (x|x \in N, 1 \le x \le 5)$ দুইটি সেট।

∴ A ⊂ B.

এখন
$$A \cup B = \{1,2,3\} \cup \{1,2,3,4,5\}$$

= $\{1,2,3,4,5\}$
= B .

এভাবে, যদি $A \subset B$ তথন $A \cup B = B$ এবং যদি $B \subset A$ তথন $A \cup B = A$.

একইভাবে নিজে কর : $A \subset B$ তখন $A \cap B = A$ এবং যদি $B \subset A$ তখন $A \cap B = B$

প্রতিজ্ঞা $m{e}$ । $A \subset (A \cup B)$: মনে করি, A এবং B দুইটি সেটে। পাশের চিত্র লক্ষ করি R_1 এবং R_2 এলাকা A সেটের অন্তর্ভূক্ত। আবার, R_1 এবং R_2 এলাকা B এর অন্তর্ভূক্ত।

সুতরাং, R_1,R_2 এবং R_3 এলাকা $A\cup B$ এর অন্তর্ভুক্ত। কিন্তু R_1 এবং R_2 অঞ্চল R_1,R_2 এবং R_3 এলাকার অন্তর্গত $i.e.\ A\subset (A\cup B).$

সিদ্ধাম্ভ যেকোনো সেট A ও B এর জন্য

$$A \subset (A \cup B)$$
 এবং $B \subset (A \cup B)$

দুষ্টব্য : একইভাবে নিজে কর : যেকোনো সেট A এবং B এর জন্য $(A \cap B) \subset A$ এবং $(A \cap B) \subset$

প্রতিজ্ঞা ৬। $A \cup U = U$ এবং $A \cup \Phi = A$ আমরা জানি, $A \subset U$ এবং $\Phi \subset A$ (4) নং ধর্মানুযায়ী, $A \cup U = U$ এবং $A \cup \Phi = A$

কাজ :

১। A∪B নির্ণয় কর যখন

 $A = \{x | x$ পূর্ণসংখ্যা, $-2 \le x < 1\}$ এবং $B = \{x | x$ মৌলিক সংখ্যা, $24 \le x \le 28\}$

- ২। $A \cup U$ নির্ণয় কর যেখানে $U = \{x | x$ পূর্ণসংখ্যা, $-2 < x < 3\}$ এবং $A = \{x | x \in z, -1 < x \le 1\}$
- থদি A = {2,3,5}, B = {a,b,c}, C = {2,3,5,7} এবং
 D = {a,b,c,d} হয়, তবে প্রমাণ কর যে, (A∪B) ⊂ (C∪D)
- 8 । A = {a,b,c} এবং B = {b,c,d} এর জন্য যাচাই কর A ∩ B = B ∩ A.
- ৫। যদি A = {1,3,5,7}, B = {3,7,8} এবং C = {7,8,9} হয়, তবে দেখাও য়ে,
 (A∩B)∩C = (B∩C)∩A.

প্রতিজ্ঞা ৭। বন্টন নিয়ম (Distributive Law)

A, B, C যেকোনো সেট হলে, দেখাও যে,

- $(\overline{\bullet})$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- $(\forall) \ A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

প্রমাণ : মনে করি, $x \in A \cup (B \cap C)$

তাহলে $x \in A$ অথবা $x \in B \cap C$

- $\Rightarrow x \in A$ অথবা $(x \in B)$ এবং $x \in C$)
- \Rightarrow $(x \in A$ অথবা $x \in B)$ এবং $(x \in A$ অথবা $x \in C)$
- $\Rightarrow x \in A \cup B \neq x \in A \cup C$
- $\Rightarrow x \in (A \cup B) \cap (A \cup C)$
- $\therefore A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$(i)

আবার মনে করি, $x \in (A \cup B) \cap (A \cup C)$

তাহলে, $x \in A \cup B$ এবং $x \in A \cup C$

- \Rightarrow $(x \in A$ অথবা $x \in B)$ এবং $(x \in A$ অথবা $x \in C)$
- $\Rightarrow x \in A$ অথবা $(x \in B$ এবং $x \in C)$
- $\Rightarrow x \in A$ অথবা $x \in B \cap C$
- $\Rightarrow x \in A \cup (B \cap C)$
- $(A \cup B) \cap (A \cup C) \subset (A \cup (B \cap C))$ (ii)

সুতরাং (i) ও (ii) হতে পাওয়া যায় $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

(খ) একইভাবে নিজে কর।

কাজ :

- (i) বন্টন বিধির সূত্রটি প্রমাণ কর। যেখানে -
- $A = \{1,2,3,6\}, B = \{2,3,4,5\} \text{ are } C = \{3,5,6,7\}$
- (ii) প্রমাণটি ভেনচিত্রের মাধ্যমে দেখাও

সিদ্ধাম্ড সেটের সংযোগ ও ছেদ প্রক্রিয়া দুইটির প্রত্যেকটি অপরটির প্রেক্ষিতে বন্টন নিয়ম মেনে চলে।

প্রতিজ্ঞা ৮। দ্যা মরগ্যানের সূত্র (De Morgans law) :

সার্বিক সেট U এর যেকোনো উপসেট A ও B এর জন্য (ক) $(A \cup B)' = A' \cap B'$

 $(\forall) (A \cap B)' = A' \cup B'$

প্রমাণ (ক) : মনে করি, $x \in (A \cup B)'$

তাহলে, $x \notin A \cup B$

 $\Rightarrow x \notin A$ এবং $x \notin B$

 $\Rightarrow x \in A'$ এবং $x \in B'$...

 $\Rightarrow x \in A' \cap B'$

∴ (A∪B)' ⊂ A' ∩ B'

আবার মনে করি, $x \in A' \cap B'$

তাহলে, $x \in A'$ অথবা $x \in B'$

 $\Rightarrow x \notin A$ অথবা $x \notin B \Rightarrow x \notin A \cup B$

 $\Rightarrow x \in (A \cup B)'$

 $\therefore A' \cap B' \subset (A \cup B)'$

সূতরাং $(A \cup B)' = A' \cap B'$ প্রমাণিত।

(খ) অনুরূপভাবে নিজে কর:

প্রতিজ্ঞা ৯। সার্বিক সেট U এর যেকোনো উপসেট A ও B এর জন্য $A \backslash B = A \cap B'$

প্রমাণ : মনে করি, $x \in A \setminus B$

তাহলে $x \in A$ এবং $x \notin B$

 $\Rightarrow x \in A$ এবং $x \in B'$

 $\therefore x \in A \cap B'$

 $\therefore A \setminus B \subset A \cap B'$

আবার মনে করি, $x \in A \cap B'$

তাহলে, $x \in A$ এবং $x \in B'$

 $\Rightarrow x \in A$ এবং $x \notin B$

∴ x ∈ A\B

 $A \cap B' \subset A \setminus B$

সূতরাং, $A \setminus B = A \cap B'$

প্রতিজ্ঞা ১০। যেকোনো সেট A,B,C এর জন্য

$$(\overline{\diamond})$$
 $A \times (B \cap C) = (A \times B) \cap (A \times C)$

$$(\forall) \ A \times (B \cup C) = (A \times B) \cup (A \times C)$$

প্রমাণ : (ক) সংজ্ঞানুসারে

 $A \times (B \cap C)$

 $=\{(x,y):x\in A,y\in B\cap C\}$

১৪

$$= \{(x,y): x \in A, y \in B \text{ and } y \in C\}$$

$$= \{(x,y): (x,y) \in A \times B \text{ and } (x,y) \in A \times C\} = \{(x,y): (x,y) \in (A \times B) \cap (A \times C)$$

$$A \times (B \cap C) \subset (A \times B) \cap (A \times C)$$

আবার $(A \times B) \cap (A \times C)$

- = {(x, y) : (x, y) ∈ A × B এবং (x, y) ∈ A × C}
- = $\{x, y\}$: $x \in A$, $y \in B$ এবং $x \in A$, $y \in C\}$
- $= \{(x, y) : x \in A, y \in B \cap C\}$
- $= \{(x, y) : (x, y) \in A \times B \cap C\}$
- ∴ (A × B) ∩ (A × C) ⊂ A × (B ∩ C)

অর্থাৎ $A \times (B \cap C) = (A \times B) \cap (A \times C)$

- (খ) অনুরূপভাবে নিজে কর।
- ১১। সেট প্রক্রিয়া সংক্রান্ত আরো কতিপয় প্রতিজ্ঞা :
 - (क) A যেকোনো সেট হলে A ⊂ A
 - (খ) ফাঁকা সেট Φ যেকোনো সেট A এর উপসেট
 - (গ) A ও B যেকোনো সেট হলে A = B হবে যদি ও কেবল যদি A ⊂ B এবং B ⊂ A হয়।
 - (ঘ) যদি A ⊂ Φ হয়, তবে A = Φ
 - (%) यिन A ⊂ B এবং B ⊂ C তবে, A ⊂ C
 - (b) A ⊗ B যেকোনো সেট হলে, A ∩ B ⊂ A এবং A ∩ B ⊂ B
 - (ছ) A ও B যেকোনো সেট হলে $A \subset A \cup B$ এবং $B \subset A \cup B$

প্রমাণ : (খ) : মনে করি $\Phi \notin A$, সূতরাং সংজ্ঞানুসারে এমন x আছে যেন $x \in \Phi$ । কিন্তু $\Phi \notin A$ যেহেতু শূন্য সেটে আদৌ কোনো উপাদান নেই।

- ∴ Φ ∉ A সত্য নয়
- ∴ Φ ∈ A
 - (ঘ) দেওয়া আছে, A ⊂ Φ আবার আমরা জানি, Φ ⊂ A সুতরাং A = Φ (প্রতিজ্ঞা গ থেকে)
 - (ছ) সেটের সংযোগের সংজ্ঞানুযায়ী A সেটের সকল উপাদান $A \cup B$ সেটে থাকে। সুতরাং উপসেটের সংজ্ঞানুযায়ী $A \subset A \cup B$ । একই যক্তিতে $B \subset A \cup B$

দুষ্টব্য : ক. গ. ভ ও চ প্রতিজ্ঞান্তলো নিজে কর।

কাজ: [এখানে সকল সেট সার্বিক সেট U এর উপসেট বিবেচনা করতে হবে]

- ১। দেখাও যে : $A \cap (B \cap C) = (A \cap B) \cap (A \cap C)$
- ২। দেখাও যে. A ⊂ B হবে যদি এবং কেবল যদি নিম্নোক্ত যেকোনো একটি শর্ত খাটে :
 - (₹) A ∩ B = A
 - (♥) A ∪ B = B
 - (গ) B'

 A
 - (∇) A ∩ B' = Φ
 - (%) B ∪ A' = U

- ৩। দেখাওয়ে,
- (₹) A\B ⊂ A ∪ B
- (A) $A' \setminus B' = B \setminus A$
- (গ) A\B ⊂ A
- (ঘ) A ⊂ B হলে . A ∪ (B\A) = B
- (%) $A \cap B = \Phi$ হলে, $A \subset B'$ এবং $A \cap B' = A$ এবং $A \cup B' = B'$
- ৪। দেখাও যে.
- (♠) (A ∩ B)' = A' ∪ B'
- $(\forall) (A \cup B \cup C)' = A' \cap B' \cap C'$
- $(\mathfrak{A}) (A \cap B \cap C)' = A' \cup B' \cup C'$

সমতুল ও অসীম সেট

এক-এক মিল (One One Correspondence)

মনে করি, $A = \{a,b,c\}$ তিনজন লোকের সেট এবং $B = \{30,40,50\}$ ঐ তিনজন লোকের বয়সের সেট। অধিকম্ভ মনে করি, a এর বয়স 30, b এর বয়স 40 এবং C এর বয়স 50. সূতরাং বলা যায় যে, A সেটের সাথে B সেটের এক-এক মিল আছে।

সংজ্ঞা : যদি A সেটের প্রতিটি উপাদানের সাথে B সেটের একটি ও কেবল একটি উপাদান এবং B সেটের প্রতিটি উপাদানের সাথে A সেটের একটি ও কেবল একটি উপাদানের মিল স্থাপন করা হয়, তবে A ও B এর মধ্যে এক-এক মিল বলা হয়। A ও B এর মধ্যে এক এক মিলকে সাধারণত $A \leftrightarrow B$ লিখে প্রকাশ করা হয় এবং A সেটের কোন সদস্য x এর সঙ্গে B সেটের যে সদস্য y এর মিল করা হয়েছে তা $x \leftrightarrow y$ লিখে বর্ণনা করা হয়।

সমতুল সেট (Equivelent set)

ধরি, $A = \{1, 2, 3\}$ এবং $B = \{a, b, c\}$ দুইটি সেট। নিচের চিত্রে $A \otimes B$ সেটছয়ের মধ্যে একটি এক-এক মিল স্থাপন করে দেখানো হলো :

সংজ্ঞা : যেকোনো সেট $A \circ B$ এর মধ্যে যদি একটি এক-এক মিল $A \leftrightarrow B$ বর্ণনা করা যায়, তবে $A \circ B$ কে সমতুল সেট বলা হয়। $A \circ B$ কে সমতুল বোঝাতে $A \sim B$ প্রতীক লেখা হয়। $A \sim B$ প্রতীক হলে, এদের যেকোনো একটিকে অপরটির সাথে সমতুল বলা হয়।

উদাহরণ ১০। দেখাও যে, $A = \{1,2,3,.....n\}$ এবং $B = \{1,3,5,......2n-1\}$ সেটছয় সমতুল, যেখানে n একটি স্বাভাবিক সংখ্যা।

সমাধান : $A \circ B$ সেট দুইটির মধ্যে একটি এক-এক মিল নিম্নের চিত্রে দেখানো হলো :

সুতরাং A ও B সেট দুইটি সমতুল।

মম্ব্র : উপরের চিত্রিত এক-এক মিলটিকে $A \leftrightarrow B : K \leftrightarrow 2k-1$, $k \in A$ দ্বারা বর্ণনা করা যায়।

উদাহরণ ১১। দেখাও যে, স্বাভাবিক সংখ্যার সেট N এবং জোড় সংখ্যার সেট $A = \{2, 4, 6,n....\}$ সমতুল।

সমাধান : এখানে, $N = \{1,2,3,......; n......\}$ N এবং A এর মধ্যে একটি এক-এক মিল নিম্নের চিত্রে দেখানো হলো

সুতরাং N ও A সমতুল সেট।

মম্ব্র : উপরে চিত্রিত এক-এক মিলটিকে $N \leftrightarrow A: n \leftrightarrow 2n, n \in N$ দ্বারা বর্ণনা করা যায়।

দুষ্টব্য : ফাঁকা সেট Ф এর নিজের সমতুল ধরা হয়। অর্থাৎ, Ф ~ Ф

প্রতিজ্ঞা 🕽 । প্রত্যেক সেট 🔏 তার নিজের সমতুল।

প্রমাণ : A ~ Φ হলে, A ~ A ধরা হয়।

মনে করি, $A \neq \Phi$

A সেটের প্রত্যেক সদস্য x এর সঙ্গে তার নিজেকে মিল করা হলে এক-এক মিল $A \leftrightarrow A: x \leftrightarrow x, x \in A$ স্থাপিত হয়।
সূতরাং $A \sim A$.

প্রতিজ্ঞা ২ : যদি $A \circ B$ সমতুল সেট হয় এবং $B \circ C$ সমতুল সেট হয়, তবে $A \circ C$ সমতুল সেট হবে।

প্রমাণ : যেহেতু $A \sim B$, সূতরাং A এর প্রত্যেক সদস্য x এর সঙ্গে B এর একটি অনন্য সদস্য y এর মিল করা যায়। আবার যেহেতু $B \sim C$, সূতরাং B এর এই সদস্য y এর সঙ্গে C এর একটি অনন্য সদস্য z এর মিল করা যায়। এখন A এর সদস্য x এর সঙ্গে C এর এ সদস্য z এর মিল করা হলে, $A \circ C$ সেটের মধ্যে একটি এক-এক মিল স্থাপিত হয়। অর্থাৎ $A \sim C$ হয়।

সাম্প্র অনম্প্রসট (Finite and Infinite sets)

 $A = \{15, 16, 17, 18, 19, 20, 21, 22\}$ সেটটির সদস্যগুলো গণনা করে দেখা যায় যে, A সেটের সদস্য সংখ্যা 8। এই গণনা কাজ A সেটের সঙ্গে $B = \{1, 2, 3, 4, 5, 6, 7, 8\}$ সেটের একটি এক-এক মিল স্থাপন করে সম্পন্ন করা হয়। যেমন,

এরপ গণনা করে যে সকল সেটের সদস্য সংখ্যা নির্ধারণ করা যায়, তাদেরকে সান্ত সেট বলা হয়। ফাঁকা সেটকেও সান্ত সেট ধরা হয়।

সংজ্ঞা : (ক) ফাঁকা সেট Φ সান্ত সেট এর সদস্য সংখ্যা 0.

- (খ) যদি কোনো সেট A এবং $J_m=\{1,2,3,....,m\}$ সমতুল হয়, যেখানে $m\in N$, তবে A একটি সান্ত সেট এবং A এর সদস্য সংখ্যা m ।
- (গ) A কোনো সান্ত সেট হলে, A এর সদস্য সংখ্যাকে n(A) দ্বারা সূচিত হয়।
- (ঘ) কোনো সেট A সান্ত সেট না হলে, একে অনন্ত সেট বলা হয়।

দ্রষ্টব্য ১। $J_1 = \{1\}$, $J_2 = \{1, 2\}$, $J_3 = \{1, 2, 3\}$ ইত্যাদি প্রত্যেকেই N এর সান্ত উপসেট এবং $n(J_1) = 1$, $n(J_2) = 2$, $n(J_3) = 3$ ইত্যাদি।

বাস্তবিক পক্ষে, $J_m \sim J_m$ (এই অনুচ্ছেদের প্রতিজ্ঞা ১ দুষ্টব্য) এবং $n(J_m) = m$ ।

দ্রষ্টব্য ২। তথুমাত্র সান্ত সেটেরই সদস্য সংখ্যা নির্দিষ্ট করা যায়। সুতরাং n(A) লিখলে বুঝতে হবে A সান্ত সেট।
দ্রষ্টব্য ৩। $A \circ B$ সমতুল সেট এবং এদের মধ্যে একটি সেট সান্ত হলে অপর সেটটিও সান্ত হবে এবং n(A) = n(B) হবে।

প্রতিজ্ঞা ত। যদি A সান্ত সেট হয় এবং B,A এর প্রকৃত উপসেট হয়, তবে B সান্ত সেট এবং n(B) < n(A) হবে।

প্রতিজ্ঞা 8 । A অনন্ত সেট হবে যদি ও কেবল যদি A এবং A এর একটি প্রকৃত উপসেট সমতুল হয় । \mathbf{F} একটি অনন্ত সেট (উদাহরণ ১১ দুউব্য) ।

সাম্প্রসটের উপাদান সংখ্যা

সান্ত সেট A এর উপাদান সংখ্যা n(A) দ্বারা সূচিত করা হয়েছে এবং n(A) নির্ধারণের পদ্ধতি ব্যাখ্যা করা হয়েছে।

মনে করি, n(A) = P > 0, n(B) = q > 0, যেখানে $A \cap B = \Phi$

উপরের চিত্রে বর্ণিত এক-এক মিল থেকে দেখা যায় যে, $A \cup B \sim J_{p+q}$ অর্থাৎ, $n(A \cup B) = p+q = n(A) + n(B)$ এ থেকে বলা যায় যে,

প্রতিজ্ঞা ১। যদি A ও B পরম্পর নিম্ছেদ সেট হয়, তবে $n(A \cup B) = n(A) + n(B)$ এই প্রতিজ্ঞাকে সম্প্রসারণ করে বলা যায় যে, $n(A \cup B \cup C) = n(A) + n(B) + n(C)$

 $n(A \cup B \cup C \cup D) = n(A) + n(B) + n(C) + n(D)$ ইত্যাদি, যেখানে A, B, C, D সেটগুলো পরস্পর নিন্ছেদ সান্ত সেট।

প্রতিজ্ঞা ২। যেকোনো সান্ত সেট A ও B এর জন্য $n(A \cup B) = n(A) + n(B) - n(A \cap B)$

প্রমাণ : এখানে, $A \setminus B, A \cap B$ এবং $B \setminus A$ সেট তিনটি পরস্পর নিস্ছেদ সেট [ভেনচিত্র দ্রষ্টব্য] এবং

$$A = (A \setminus B) \cup (A \cap B)$$

$$B = (B \setminus A) \cup (A \cap B)$$

$$A \cup B = (A \setminus B) \cup (A \cap B) \cup (B \setminus A)$$

$$\therefore n(A) = n(A \setminus B) + n(A \cap B) \dots (i)$$

$$n(B) = n(B \setminus A) + n(A \cap B) \dots (ii)$$

$$n(A \cup B) = n(A \setminus B) + n(A \cap B) + n(B \setminus A) \dots (iii)$$

সূতরাং, (i) নং থেকে পাই, $n(A \setminus B) = n(A) - n(A \cap B)$ (ii) নং থেকে পাই, $n(B \setminus A) = n(B) - n(A \cap B)$ এখন, $n(A \setminus B)$ এবং $n(B \setminus A)$ (iii) নং এ বসিয়ে পাই, $n(A \cup B) = n(A) - n(A \cap B) + n(B) - n(A \cap B) + n(A \cap B)$ $\therefore n(A \cup B) = n(A) + n(B) - n(A \cap B)$

কাজ :

১। নিম্নোক্ত প্রত্যেক ক্ষেত্রে A ও B এর মধ্যে সম্ভাব্য সকল এক-এক মিল বর্ণনা কর :

(
$$\forall$$
) $A = \{a,b,c\}$ $B = \{a,b,c\}$

- ২। উপরের প্রশ্নে বর্ণিত প্রত্যেক এক -এক মিলকরণের জন্য $F = \{(x,y) : x \in A, y \in B\}$ এবং $x \leftrightarrow y$ সেটটি তালিকা পদ্ধতিতে বর্ণনা কর।
- মনে করি A = {a,b,c,d} এবং B = {1,2,3,4} । A×B এর একটি উপসেট F বর্ণনা কর। যার
 অন্তর্ভুক্ত ক্রমজোড়গুলোর প্রথম পদের সঙ্গে দ্বিতীয় পদের মিল করা হলে, A ও B এর একটি এক-এক
 মিল স্থাপিত হয় যেখানে, a ↔ 3 ।
- ৪। দেখাও যে, A = {1,2,3,......n} এবং B = {1,2,2²,.......2^{m+1}} সেট দুইটি সমতুল।
- ৫। দেখাও যে, S = {3":n=0 অথবা n∈N} সেটটি N এর সমতুল।
- উপরের প্রশ্নে বর্ণিত S সেটের একটি প্রকৃত উপসেট বর্ণনা কর যা S এর সমতুল।
- ৭। দেখাও যে, সকল বিজ্ঞাভ স্বাভাবিক সংখ্যার সেট A = {1, 3, 5, 7,.....} ইত্যাদি অনন্ত সেট।

শক্তি সেট

মাধ্যমিক বীজগণিতে এ সংক্রান্ত বিস্তারিত অলোচনা করা হয়েছে। এখানে শুধু শক্তি সেটের উদাহরণ দেওয়া হলো:

উদাহরণ ১২। যদি $A = \{1, 2, 3\}$ এবং $B = \{2, 3, 4\}$ হয়, তবে দেখাও যে, $P(A) \cap P(B) = P(A \cap B)$

$$P(A \cap B) = \{\Phi, \{2\}, \{3\}, \{2,3\}\}$$

সূতরাং $P(A) \cap P(B) = P(A \cap B)$.

২০

উদাহরণ ১৩। যদি $A = \{a,b\}$ এবং $B = \{b,c\}$ হয়, তবে দেখাও যে, $P(A) \cup P(B) \subset P(A \cap B)$ সমাধান : এখানে, $P(A) = \{\Phi, \{a\}, \{b\}, \{a,b\}\}$ $P(B) = \{\Phi, \{b\}, \{c\}, \{b,c\}\}$

∴ P(A) ∪ P(B) = {Φ, {a}, {b}, {c}, {a, b}, {b, c}}
আবার, A∪B = {a,b,c}

∴ $P(A \cup B) = \{\Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$ সুতরাং, $P(A) \cup P(B) \subset P(A \cap B)$.

কাজ :

১। যদি A = {1, 2, 3}, B = {1, 2}, C = {2, 3} এবং D = {1, 3} হয়, তবে দেখাও যে, P(A) = {A, B, C, D, {1}, {2}, {3}, Φ}

২। যদি A = {1, 2} এবং B = {2, 5} হয়, তবে দেখাও যে, P(A) = {A, B, C, D, {1}, {2}, {3}, Φ}.

(i) P(A) ∩ P(B) = P(A ∩ B)

(ii) $P(A) \cup P(B) \neq P(A \cup B)$.

বাস্ত্র সমস্যা সমাধানে সেট:

বাস্তব সমস্যা সমাধানে ভেনচিত্র ব্যবহার করা হয়। এখানে উলেখ্য যে, প্রতিসেটের উপাদান সংখ্যা ভেনচিত্রে লেখা হবে, তা কয়েকটি উদাহরণের মাধ্যমে দেখানো হলো।

উদাহরণ ১৪। 50 জন লোকের মধ্যে 35 জন ইংরেজি 25 জন ইংরেজি ও বাংলা বলতে পারে এবং প্রত্যেকেই দুইটি ভাষার অন্তত একটি বলতে পারে। বাংলা বলতে পারে কত জন ? কেবল মাত্র বাংলা বলতে পারে কত জন ?

সমাধান : মনে করি, সকল লোকের সেট S এবং তাদের মধ্যে যারা ইংরেজি বলতে পারে তাদের সেট E , যারা বাংলা বলতে পারে তাদের সেট B ।

তাহলে প্রস্থানুসারে, n(S) = 50, n(E) = 35, $n(E \cap B) = 25$ এবং $S = E \cup B$

মনে করি, n(B) = x

তাহলে, $n(S) = n(E \cup B) = n(E) + n(B) - n(E \cap B)$ থেকে পাই, 50 = 35 + x - 25

$$\sqrt{3}$$
, $x = 50 - 35 + 25 = 40$

∴ বাংলা বলতে পারে 40 জন।
এখন, যারা কেবল বাংলা বলতে পারে, তাদের সেট হচেছ (B\E)।

মনে করি, $n(B \setminus E) = y$ যেহেতু $E \cap B$ এবং $B \setminus E$ নিম্ছেদ এবং $B = (E \cap B) \cup (B \setminus E)$ [ভেনচিত্র দুষ্টব্য]

সুতরাং $n(B) = n(E \cap B) + n(B \setminus E)$

∴ 40 = 25 + v

 $\sqrt{100}$ $\sqrt{100}$ $\sqrt{100}$ $\sqrt{100}$ $\sqrt{100}$ $\sqrt{100}$ $\sqrt{100}$ $\sqrt{100}$ $\sqrt{100}$ $\sqrt{100}$

অর্থাৎ, n(B\E) = 15

∴ কেবল বাংলা বলতে পারে 15 জন। অতএব, বাংলা বলতে পারে 40 জন এবং কেবলমাত্র বাংলা বলতে পারে 15 জন।

উদাহরণ ১৫। ভূগোল ও ইতিহাস বিষয়ে পড়াওনা করছে এমন ছাত্রদের সেট যথাক্রমে G ও H হলে নিম্নের প্রশ্নের উত্তর দাও (উলেখ্য, সেটের সদস্য নির্দেশ করতে x ব্যবহার করা হয়েছে।)

- (a) (i) ভূগোল ও ইতিহাস উভয় বিষয়ে পড়াঝনা করেছে এমন ছাত্রদের সংখ্যা
 - (ii) তথুমাত্র ইতিহাসে পড়াতনা করছে এমন ছাত্রদের সংখ্যা ভেনচিত্রে গাঢ় করে দেখাও।
- (b) কোনো ক্লাসের 32 জন ছাত্রের মধ্যে প্রত্যেক ছাত্র অন্তত ভূগোল বা ইতিহাস বিষয়ে পড়াখনা করছে। তাদের মধ্যে 22 জন ভূগোল এবং 15 জন ইতিহাসে। কতজন ছাত্র ইতিহাস ও ভূগোল উভয় বিষয়ে পড়েছে তা ভেনচিত্রে দেখাও।

সমাধান :
$$(a)$$
 (i) $x \in H$ এবং $x \in G$
 $i.e.$ $x \in H \cap G$

ধরি, ইতিহাস বিষয়ে পড়েছে এমন ছাত্রদের সেট $\,H\,$ (b) ভূগোল বিষয়ে পড়েছে এমন ছাত্রদের সেট G তাহলে $H \cap G$ ভূগোল ও ইতিহাস বিষয় পড়েছে এমন ছাত্রদের সেট ধরি, $n(H \cap G) = x$

যেহেতু এক বিষয়ে অন্তত প্রত্যেকে পড়েছে $H \cup G = \cup$

i.e.
$$(22-x)+x+(15-x)=32$$

 $\Rightarrow 37-x=32$

∴ x = 5

সুতরাং 5 জন ছাত্র ইতিহাস ও ভূগোল উভয় বিষয়ে পড়েছে।

উদাহরণ ১৬। একটি শ্রেণির 35জন বালিকার প্রত্যেকে দৌড়, সাঁতার ও নাচের যেকোনো একটিতে অংশগ্রহণ করে। তাদের মধ্যে 15 জন দৌড়, 4 জন সাঁতার ও নাচ, জন তথু দৌড়, 7 জন সাঁতারে অংশগ্রহণ করে কিন্তু নাচে নয়।

তাদের মধ্যে 20 জন দৌড় পছন্দ করে না, x জনের সাঁতার ও নাচ পছন্দ, 2x জন তথু নাচ পছন্দ, 2 জন তথু সাঁতার পছন্দ করে।

- (a) এ তথ্যগুলো ভেনচিত্রে দেখাও
- (b) x নির্ণয় কর
- (c) সেটের মাধ্যমে ব্যাখ্যা কর {যে সমস্ত বালিকা দৌড় ও নাচ পছন্দ করে কিন্তু সাঁতার নয়}
- (d) কতজন বালিকা দৌঁড় ও নাচ পছন্দ করে কিন্তু সাঁতার পছন্দ করে না।

ধরি, সেট
$$J=$$
 যারা দৌড় পছন্দ করে

S = যারা সাঁতার পছক্দ করে

D = যারা নাচ পছক্দ করে

$$41$$
, $2x + x + 2 = 20$

বা,
$$3x = 18$$

$$x = 6$$

(c) {য়ে সব বালিকা দৌড় ও নাচ পছব্দ করে কিন্তু সাঁতার পছব্দ করে না}

$$J \cap D \cap S'$$

$$(d)$$
 ধরি, $n(J \cap D \cap S') = y$

দেওয়া আছে
$$n(J) = 15$$

$$y+4+7+2=15$$

$$y = 2$$

তথু 2 জন বালিকা দৌড় এবং নাচ পছন্দ করে কিন্তু সাঁতার পছন্দ করে না।

মনে করি, $n(B \cap V) = x$ এবং ভেনচিত্রে নিচের তথ্যগুলো ব্যাখ্যা কর:

- (a) $B \cup V$ সেটের বর্ণনা দাও এবং $n(B \cup V)$ কে x এর মাধ্যমে প্রকাশ কর।
- (b) x এর সম্ভাব্য ন্যুনতম মান নির্ণয় কর।
- (c) x এর সম্ভাব্য বৃহত্তম মান নির্ণয় কর।

সমাধান :

(a) B∪V হলো এমন সব ছাত্রের সেট যারা বাক্ষেটবল বা ভলিবল খেলা পছন্দ করে ।

$$n(B \cup V) = (18 - x) + x + (12 - x) = 30 - x$$

- $\therefore n(B \cup V) = (18-x) + x + (12-x) = 30-x$
- (b) n(B ∩ V) কুদ্রতম যখন B ∪ V = U তখন, n(B ∪ V) = n(U) = 30 x = 24 বা x = 6
- ∴ সম্ভাব্য ক্ষুদ্রতম মান x = 6
- (c) n(B ∩ V) বৃহত্তম যখন V ⊆ B = U তখন , n(B ∩ V) = n(V) = x = 12
- ∴ সম্ভাব্য বৃহত্তম মান x = 12

কাজ :

- ১। কোনো শ্রেণির 30 জন ছাত্রের 20 জন ফুটবল এবং 15 জন ক্রিকেট পছন্দ করে। প্রত্যেক ছাত্র দুইটি থেলার যেকোনো একটি খেলা পছন্দ করে। কতজন ছাত্র দুইটি খেলাই পছন্দ করে ?
- ২। কিছু সংখ্যক লোকের মধ্যে 50 জন বাংলা, 20 জন ইংরেজি এবং 10 জন বাংলা ও ইংরেজি বলত পারে। দুইটি ভাষার অন্তত একটি ভাষা কতজন বলতে পারে?
- ০। ঢাকা বিশ্ববিদ্যালয়ের আধুনিক ভাষা ইনস্টিটিউটের 100 জন শিক্ষার্থীর মধ্যে 42 জন ফ্রেঞ্চ, 30 জন জার্মান, 28 জন স্প্যানিশ নিয়েছে। 10 জন নিয়েছে ফেঞ্চ ও স্প্যানিশ, 8 জন নিয়েছে জার্মান ও স্প্যানিশ, 5 জন নিয়েছে জার্মান ও ফেঞ্চ, 3 জন তিনটি ভাষাই নিয়েছে।
 - (i) কতজন শিক্ষার্থী ঐ তিনটি ভাষার একটিও নেয়নি ?
 - (ii) কতজন শিক্ষার্থী ঐ তিনটি ভাষার কেবল একটি ভাষা নিয়েছে ?
 - (iii) কতজন শিক্ষার্থী ঐ তিনটি ভাষার কেবল দুইটি ভাষা নিয়েছে।
- ৪। কোনো স্কুলের নবম শ্রেণির মানবিক শাখার 50 জন শিক্ষার্থীর মধ্যে 29 জন পৌরনীতি, 24 জন ভ্গোল এবং 11 জন পৌরনীতি ও ভ্গোল উভয় বিষয় নিয়েছে। কতজন শিক্ষার্থী পৌরনীতি বা ভ্গোল বিষয় দুইটির কোনটিই নেয়নি ?

অনুশীলনী ১-১

১। i. কোন সেটের সদস্য সংখ্যা 2n হলে, এর উপসেটের সংখ্যা হবে 4^n

$$ii.$$
 সকল মূলদ সংখ্যার সেট $Q=\left\{rac{p}{q}:p,\ q\in Z\,,\ q\neq 0
ight\}$

iii. a,b ∈ R; $a,b = \{x : x ∈ R ∉ R ∈ A < x < b\}$

উপরের তথ্যের আলোকে নিচের কোনটি সঠিক ?

क. i ও ii थ. ii ও iii ध. i હ iii घ. i,ii હ iii

২৪

নিচের তথ্যের আলোকে (২-৪) নং প্রশ্নের উত্তর দাও :

প্রত্যেক $n \in N$ এর জন্য $A_n = \{n, 2n, 3n, \dots \}$

- A₁ ∩ A₂ এর মান নিচের কোনটি ?
 - ক. A₁ খ. A₂ গ. A₃ ঘ. A₄
- । নিচের কোনটি A₁ ∩ A₂ এর মান নির্দেশ করে ?
 - क. A, খ. A, গ. A, घ. A,
- 8। $A_2 \cap B_3$ এর পরিবর্তে নিচের কোনটি লেখা যায় ?
 - क. A, थ. A, গ. A, घ. A,
- ৫। দেওয়া আছে $U = \{x: 3 \le x \le 20, n \in Z\}$, $A = \{x: x \text{ frames } x: v \text{ frames} \}$ এবং $B = \{x: x \text{ All fines } x: x \text{ frames} \}$ নিম্নের সেটের উপাদানগুলোর তালিকা লিপিবদ্ধ কর :
 - (a) A এবং B
 - (b) C = {x : x ∈ A are x ∈ B} are

 $D = \{x : x \in A \text{ অথবা } x \in B\}$

সেট C এবং D এর বর্ণনা দাও

७। ভেনচিত্রে A এবং B সেটের উপাদানগুলো দেখানো হয়েছে। যদি n(A) = n(B) হয়, তবে নির্ণয় কর
 (a) x এর মান (b) n(A∪B) এবং n(A∩B').

- ৭। ভেনচিত্রে A এবং B সেটছয়ের প্রত্যেকের উপাদানগুলো দেখানো হয়েছে। $n(A' \cap B')$ নির্ণয় কর। (a) x এর মান (b) n(A) এবং n(B)
- ৮। যদি U = {x : x ধনাত্মক পূর্ণসংখ্যা}, A = {x : x ≥ 5} এবং B ={x : x < 12}</p>
 তবে n(A ∩ B) এবং n(A') এর মান নির্ণয় কর।
- ৯। যদি $U=\{x:x$ জোড় পূর্ণসংখ্যা $\}$, $A=\{x:3x\geq 25\}$ এবং $B=\{x:5x<12\}$ হয়, তাহলে $n(A\cap B)$ এবং $n(A'\cap B')$ এর মান নির্ণয় কর।
- ১০। দেখাও যে, (ক) $A \setminus A = \Phi$ (খ) $A \setminus (A \setminus A) = A$
- ১১। দেখাও যে, $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- ১২। যদি $A \subset B$ এবং $C \subset D$ হয়, তবে দেখাও যে, $(A \times C) \subset (B \times D)$
- ১৩। দেখাও যে, $A = \{1.2.3......n\}$ এবং $B = \{1.2.2^2.......2^{n-1}\}$ সেট দুইটি সমতুল।

- ১৪। দেখাও যে, স্বাভাবিক সংখ্যাসমূহের বর্গের সেট S = {1,4,9,25,36,......} একটি অন্ত সেট।
- ১৫। প্রমাণ কর যে, n(A) = p, n(B) = q এবং $A \cap B = \Phi$ এবং হলে, $n(A \cup B) = p + q$ ।
- ১৬। প্রমাণ কর যে, A,B,C সান্ত সেট হলে,

$$n(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(C \cap A) + n(A \cap B \cap C) + n(A \cap C) +$$

- ১৭। যদি $A = \{a, b, x\}$ এবং $B = \{c, y\}$ সার্বিক সেট $U = \{a, b, c, x, y, z\}$ এর উপসেট হলে, যাচাই কর যে, $(a)(i)A \subset B'$, $(ii)A \cup B' = B'$, $(iii)A' \cap B = B$
 - (b) নির্ণয় কর : (A∩B)∪(A∩B')
- ১৮। কোনো শ্রেণির 30জন শিক্ষার্থীর মধ্যে 19জন অর্থনীতি, 17জন ভূগোল, 11জন পৌরনীতি, 12জন অর্থনীতি ও ভূগোল, 4জন পৌরনীতি ও ভূগোল, 7 জন অর্থনীতি ও পৌরনীতি এবং 5 জন তিনটি বিষয়েই নিয়েছে। কতজন শিক্ষার্থী তিনটি বিষয়ের কোনটিই নেয়নি ?
- $\lambda > 1$ ভেনচিত্রে সার্বিক সেট U এবং উপসেট A,B,C এর সদস্য সংখ্যা উপস্থাপন করা হয়েছে 1
 - (a) যদি n(A ∩ B) = n(B ∩ C) হয়, তবে x এর মান নির্ণয় কর।
 - (b) যদি n(B ∩ C') = n(A' ∩ C) হয়, তবে y এর মান নির্ণয় কর ι
 - (c) n(U) এর মান নির্ণয় কর।

- ২০। ভেনচিত্রে A,B,C সেটের উপাদানগুলো এমনভাবে দেওয়া আছে যেন, $U=A\cup B\cup C$
 - (a) যদি n(U) = 50 হয়, তবে x এর মান নির্ণয় কর।
 - (b) n(B ∩ C') এবং n(A' ∩ B) এর মান নির্ণয় কর
 - (c) n(A ∩ B ∩ C') এর মান নির্ণয় কর

- ২১। তিনটি সেট A,B এবং C এমনভাবে দেওয়া আছে যেন, $A \cap B = \Phi, A \cap C = \Phi$ এবং $C \subset B$ ভেনচিত্র অংকন করে সেটঙলোর ব্যাখ্যা দাও :
- ২২। দেওয়া আছে $A = \{x : 2 < x \le 5, x \in R\}$ এবং $B = \{x : 1 \le x < 3, x \in R\}$ এবং $C = \{2,4,5\}$ নিমের সেটওলো অনুরূপ set notation এ প্রকাশ কর :
 - (a) $A \cap B$ (b) $A' \cap B' \triangleleft R' (d) A' \cup B$
- ২৩। দেওয়া আছে $U=\{x:x<10,x\in R\}$, $A=\{x:1< x\le 4\}$ এবং $B=\{x:3\le x<6\}$. নিচের সেটওলো অনুরূপ সেট চিহেনু মাধ্যমে প্রকাশ কর :
 - (a) A∩B
 (b) A'∩B
 (c) A∩B' এবং (d) A'∩B'
- ২৪। নিম্নে A ও B সেট দেওয়া আছে। প্রতিক্ষেত্রে $A \cup B$ নির্ণয় কর এবং যাচাই কর যে $A \subset (A \cup B)$ এবং $B \subset (A \cup B)$
 - i. A = {-2. -1, 0, 1, 2} এবং B = {-3, 0, 3}

২৫। নিমের সেটগুলো ব্যবহার করে A∩B নির্ণয় কর এবং যাচাই কর যে,

$$(A \cap B \subset A \text{ are } (A \cap B) \subset B$$

- (i) A = {0, 1, 2, 3, 5}, B = {-1, 0, 2}
- (ii) $A = \{a, b, c, d\}, B = \{b, x, c, y\}$
- ২৬। আনোয়ারা মহাবিদ্যালয়ের ছাত্রীদের মধ্যে বিচিত্রা, সন্ধানী ও পূর্বাণী পত্রিকার পাঠ্যাভাস সম্পর্কে পরিচালিত এক সমীক্ষায় দেখা গেল 60% ছাত্রী বিচিত্রা, 50% ছাত্রী সন্ধানী, 50% ছাত্রী পূর্বাণী, 30% ছাত্রী বিচিত্রা ও সন্ধানী, 30% ছাত্রী বিচিত্রা ও পূর্বাণী, 20% ছাত্রী সন্ধানী ও পূর্বাণী এবং 10% ছাত্রী তিনটি পত্রিকাই পড়ে।
 - (i) শতকরা কতজন ছাত্রী উক্ত পত্রিকা তিনটির কোনটিই পড়ে না ?
 - (ii) শতকরা কতজন ছাত্রী উক্ত পত্রিকাণ্ডলোর মধ্যে কেবল দুইটি পড়ে ?

২৭।
$$A = \{x : x \in R \text{ এবং } x^2 - (a+b)x + ab = 0\}$$

$$B = \{1, 2\} \text{ এবং } C = \{2, 4, 5\}$$
ক. A সেটের উপাদানসমূহ নির্ণয় কর।

- খ. দেখাও যে, $P(B \cap C) = P(B) \cap P(C)$
- গ. প্রমাণ কর যে, $A \times (B \cup C) = (A \times B) \cup (A \times C)$
- ২৮। একটি শ্রেণির 100 জন ছাত্রের মধ্যে 42 জন ফুটবল, 46 জন ক্রিকেট এবং 39 জন হকি খেলে। এদের মধ্যে 13 জন ফুটবল ও ক্রিকেট, 14 জন ক্রিকেট ও হকি এবং 12 জন ফুটবল ও হকি খেলতে পারে। এছাড়া 7 জন কোনো খেলায় পারদশী নয়-
 - ক. উলিখিত তিনটি খেলায় পারদর্শী এমন ছাত্রদের সেট এবং কোনো খেলায় পারদর্শী নয় এমন ছাত্রদের সেট ভেনচিত্রে দেখাও-
 - খ, কতজন ছাত্র উলিখিত তিনটি খেলায় পারদশী তা নির্ণয় কর।
 - গ. কতজন ছাত্র কেবলমাত্র একটি খেলায় পারদশী এবং কতজন অন্তত দুইটি খেলায় পারদশী ?

The END of first chapter

পঞ্চম অধ্যায়

সমীকরণ

বীজগণিতে অজ্ঞাত বা চলরাশি খুবই গুরুত্বপূর্ণ ইহা পূর্বেও আলোচনা করা হয়েছে। বাস্তব জীবনে অনির্দিষ্ট কোনো বস্তু, সংখ্যা বা বস্তুসমূহকে বুঝানোর জন্য আমরা x,y,z ইত্যাদি প্রতীক ব্যবহার করি। এই রকম প্রতীক বা প্রতীকসমূহকে চলক বা অজ্ঞাত রাশি বলে। একাধিক চলক বা অজ্ঞাত রাশির সমন্বয়ে রাশিমালার সৃষ্টি হয়। যেমন, $2x+y,x^2+z,x+y+2z$, ইত্যাদি। আবার কোনো অজ্ঞাত রাশি বা রাশিমালা যখন নির্দিষ্ট সংখ্যার বা মানের সমান লিখা হয় তখন তাকে সমীকরণ বলে। বীজগণিতে সমীকরণ খুবই গুরুত্বপূর্ণ একটি বিষয়। ইহার সাহায্যে অনেক বাস্তব সমস্যা সহজেই সমাধান করা যায়।

অধ্যায় শেষে শিক্ষার্থীরা –

- ightharpoonup দ্বিঘাত সমীকরণ $\left(ax^2+bx+c=0\right)$ সমাধান করতে পারবে।
- বর্গমূলবিশিষ্ট সমীকরণ চিহ্নিত করতে পারবে।
- বর্গমূলবিশিষ্ট সমীকরণ সমাধান করতে পারবে।
- সূচকীয় সমীকরণ ব্যাখ্যা করতে পারবে ।
- সূচকীয় সমীকরণ সমাধান করতে পারবে।
- 🕨 দুই চলকের একঘাত ও দ্বিঘাত সমীকরণের জোট সমাধান করতে পারবে।
- 🗲 বাস্তবভিত্তিক সমস্যাকে দুই চলকের একঘাত ও দ্বিঘাত সমীকরণে প্রকাশ করে সমাধান করতে পারবে।
- দুই চলকবিশিষ্ট সূচকীয় সমীকরণ জোট সমাধান করতে পারবে।
- ightarrow লেখচিত্রের সাহায্যে দ্বিঘাত সমীকরণ $\left(ax^2+bx+c=0\right)$ সমাধান করতে পারবে।

৫-১ এক চলক সমন্বিত দ্বিঘাত সমীকরণ ও তার সমাধান

মাধ্যমিক বীজগণিতে এক চলকের একঘাত ও দ্বিঘাত সমীকরণ এবং দুই চলকের একঘাত সমীকরণ বিষয়ে বিশদ আলোচনা করা হয়েছে। বীজগুলো মূলদ সংখ্যা হলে, এক চলকের দ্বিঘাত সমীকরণের বামপক্ষকে উৎপাদকে বিশ্লেষণ করে সহজেই তার সমাধান করা যায়। কিন্তু সব রাশিমালাকে সহজে উৎপাদকে বিশ্লেষণ করা যায় না। সেজন্য যেকোনো প্রকার দ্বিঘাত সমীকরণের সমাধানের জন্য নিমুলিখিত পদ্ধতিটি ব্যবহার করা হয়।

এক চলক সমন্বিত দ্বিঘাত সমীকরণের আদর্শরূপ $ax^2 + bx + c = 0$. এখানে a, b, c বাস্তব সংখ্যা এবং a এর মান কখনই শূন্য হতে পারবে না।

আমরা দ্বিঘাত সমীকরণটির সমাধান করি,

$$ax^2 + bx + c = 0$$

বা, $a^2x^2 + abx + ac = 0$ [উভয়পক্ষকে a দ্বারা গুণ করে]

বা,
$$(ax)^2 + 2(ax)\frac{b}{2} + \left(\frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2 + ac = 0$$
 বা, $\left(ax + \frac{b}{2}\right)^2 = \frac{b^2}{4} - ac$

অতএব, χ এর দুইটি মান পাওয়া গেল এবং মান দুইটি হচ্ছে

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 (ii) এবং $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$ (iii)

উপরের (i) নং সমীকরণে b^2-4ac কে দ্বিঘাত সমীকরণিটির নিশ্চায়ক বলে কারণ ইহা সমীকরণিটির মূলদ্বয়ের ধরন ও প্রকৃতি নির্ণয় করে।

নিশ্চায়কের অবস্থাভেদে দ্বিঘাত সমীকণের মূলদ্বয়ের ধরন ও প্রকৃতি

- $(i) \; b^2 4ac > 0 \;$ এবং পূর্ণবর্গ হলে সমীকরণটির মূলদ্বয় বাস্তব, অসমান ও মূলদ হবে।
- $(ii)\ b^2-4ac>0$ কিন্তু পূর্ণবর্গ না হলে সমীকরণটির মূলদ্বয় বাস্তব, অসমান ও অমূলদ হবে।
- (iii) $b^2-4ac=0$ হলে সমীকরণটির মূলদ্বয় বাস্তব ও পরস্পর সমান হবে। এক্ষেত্রে $x=-\frac{b}{2a},-\frac{b}{2a}$
- ${
 m (iv)}\;b^2-4ac<0$ অর্থাৎ ঋণাত্মক হলে মূলদ্বয় অবাস্তব হবে। এক্ষেত্রে মূলদ্বয় সবসময় দুইটি অনুবন্ধী জটিল বা কাল্পনিক সংখ্যা হয়। এ বিষয়ে উচ্চতর শ্রেণিতে জানতে পারবে।

উদাহরণ $\mathbf{3}$ । $x^2 - 5x + 6 = 0$ এর সমাধান কর।

সমাধান : $ax^2 + bx + c = 0$ সমীকরণের সাথে তুলনা করে এক্ষেত্রে পাওয়া যায় a = 1, b = -5 এবং c = 6 . অতএব সমীকরণিটর সমাধান

$$x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4.1.6}}{2.1} = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm \sqrt{1}}{2}$$
$$= \frac{5 \pm 1}{2} = \frac{5 + 1}{2}, \frac{5 - 1}{2}$$

অর্থাৎ $x_1 = 3$, $x_2 = 2$.

উদাহরণ ২। $x^2 - 6x + 9 = 0$ এর সমাধান কর।

সমাধান : $ax^2 + bx + c = 0$ সমীকরণের সাথে তুলনা করে এক্ষেত্রে পাওয়া যায় a = 1, b = -6 এবং c = 9 . অতএব সমীকরণিটর সমাধান

$$x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4.1.9}}{2.1} = \frac{6 \pm \sqrt{36 - 36}}{2} = \frac{6 \pm 0}{2}$$

অর্থাৎ $x_1 = 3$, $x_2 = 3$.

উদাহরণ ৩। সমাধান কর $x^2 - 2x - 2 = 0$

সমাধান : আদর্শরূপ দ্বিঘাত সমীকরণের সাথে তুলনা করে পাওয়া যায়, $a=1,\,b=-2,\,c=-2$.

অতএব সমীকরণটির মূলদ্বয়

$$x = \frac{2 \pm \sqrt{(-2)^2 - 4.1.(-2)}}{2.1} = \frac{2 \pm \sqrt{4 + 8}}{2} = \frac{2 \pm \sqrt{12}}{2}$$
 বা,
$$x = \frac{2 \pm 2\sqrt{3}}{2} = \frac{2\left(1 \pm \sqrt{3}\right)}{2}$$
 অর্থাৎ $x_1 = 1 + \sqrt{3}$, $x_2 = 1 - \sqrt{3}$.

এখানে লক্ষণীয় যে, সাধারণ নিয়মে মূলদ সংখ্যার সাহায্যে x^2-2x-1 কে উৎপাদকে বিশ্লেষণ করা না গেলেও প্রদত্ত সমীকরণটির সমাধান করা সম্ভব হয়েছে।

উদাহরণ 8 । সমাধান কর $3 - 4x - x^2 = 0$

সমাধান : আদর্শরূপ দ্বিঘাত সমীকরণের সাথে তুলনা করে পাওয়া যায়, $a=-1,\,b=-4,\,c=3$. অতএব সমীকরণিটির মূলদ্বয়

$$x = \frac{-(-1) \pm \sqrt{(-4)^2 - 4 \cdot (-1)3}}{2 \cdot (-1)} = \frac{1 \pm \sqrt{16 + 12}}{-2} = \frac{4 \pm \sqrt{28}}{-2} = \frac{4 \pm 2\sqrt{7}}{-2}$$

$$\forall x \in -(2 \pm \sqrt{7})$$

$$\forall x \in x_1 = -2 - \sqrt{7}, \ x_2 = -2 + \sqrt{7}.$$

কাজ : উপরের (ii) ও (iii) নং সূত্রের সাহায্যে $ax^2+bx+c=0$ হতে x_1 এবং x_2 এর মান নির্ণয় কর যখন (i)b=0, (ii)c=0 (iii)b=c=0 (iv)a=1 এবং (v)a=1, b=c=2p

অনুশীলনী ৫.১

সূত্রের সাহায্যে নিচের সমীকরণগুলোর সমাধান কর ঃ

$$3 \cdot 2x^2 + 9x + 9 = 0$$

$$3 - 4x - 2x^2 = 0$$

$$8 \mid 2x^2 - 5x - 1 = 0$$

$$e \mid 3x^2 + 7x + 1 = 0$$

$$9 \cdot 1 \qquad 2 - 3x^2 + 9x = 0$$

$$9: x^2 - 8x + 16 = 0$$

$$b = 2x^2 + 7x - 1 = 0$$

$$\delta : 7x - 2 - 3x^2 = 0$$

৫.২। মূল চিহ্ন সম্বলিত সমীকরণ

আমরা জানি, চলকের যে মান বা মানগুলোর জন্য সমীকরণের উভয় পক্ষ সমান হয়, ঐ মান বা মানগুলোই সমীকরণের বীজ বা মূল (Root) এবং ঐ মান বা মানগুলোর দ্বারা সমীকরণটি সিদ্ধ হয়।

সমীকরণে চলকের বর্গমূল সম্বলিত রাশি থাকলে তাকে বর্গ করে বর্গমূল চিহ্নমুক্ত নতুন সমীকরণ পাওয়া যায়। উক্ত সমীকরণ সমাধান করে যে বীজগুলো পাওয়া যায় অনেক সময় সবগুলো বীজ প্রদন্ত সমীকরণটিকে সিদ্ধ করে না। এ ধরনের বীজ অবান্তর (Extraneous) বীজ। সুতরাং মূলচিহ্ন সম্বলিত সমীকরণ সমাধান প্রক্রিয়ায় প্রাপ্ত বীজগুলো প্রদন্ত সমীকরণের বীজ কি না তা অবশ্যই পরীক্ষা করে দেখা দরকার। পরীক্ষার পর যে সব বীজ উক্ত সমীকরণকে সিদ্ধ করে তাই হবে প্রদন্ত সমীকরণের বীজ। নিচে কয়েকটি উদাহরণ দেওয়া হলো।

কাজ:
$$p = \sqrt{\frac{x}{x+16}}$$
 ধরে $\sqrt{\frac{x}{x+16}} + \sqrt{\frac{x+16}{x}} = \frac{25}{12}$ সমীকরণটির সমাধান করে শুদ্ধি পরীক্ষা কর ।

উদাহরণ ১। সমাধান কর : $\sqrt{8x+9} - \sqrt{2x+15} = \sqrt{2x-6}$

সমাধান:
$$\sqrt{8x+9} - \sqrt{2x+15} = \sqrt{2x-6}$$

$$\sqrt{3}$$
, $\sqrt{2x+15} + \sqrt{2x-6} = \sqrt{8x+9}$

বা,
$$2x+15+2x-6+2\sqrt{2x+15}\sqrt{2x-6}=8x+9$$
 [বর্গ করে]

$$\sqrt{2x+15}\sqrt{2x-6} = 2x$$

বা,
$$(2x+15)(2x-6)=4x^2$$
 [পুনরায় বর্গ করে]

$$4x^2 + 18x - 90 = 4x^2$$

বা,
$$18x = 90$$

$$\therefore x = 5$$

শুদ্ধি পরীক্ষা : x=5 হলে, বামপক্ষ $=\sqrt{49}-\sqrt{25}=7-5=2$ এবং ডানপক্ষ $=\sqrt{4}=2$

∴ নির্ণেয় সমাধান x=5.

উদাহরণ ২। সমাধান কর : $\sqrt{2x+8} - 2\sqrt{x+5} + 2 = 0$

সমাধান: $\sqrt{2x+8} = 2\sqrt{x+5} - 2$

বা,
$$2x + 8 = 4(x + 5) + 4 - 8\sqrt{x + 5}$$
 [বর্গ করে]

বা,
$$8\sqrt{x+5} = 4x+20+4-2x-8$$
 [পক্ষান্তর করে]

$$41, 8\sqrt{x+5} = 2x+16 = 2(x+8)$$

বা,
$$4\sqrt{x+5} = x+8$$

বা,
$$16(x+5)=x^2+16x+64$$
 [বর্গ করে]

বা,
$$16 = x^2$$

$$\therefore x = \pm \sqrt{16} = \pm 4$$

শুদ্ধি পরীক্ষা : x=4 হলে, বামপক্ষ = $\sqrt{16}-2\sqrt{9}+2=4-2\times 3+2=0=$ ডানপক্ষ x=-4 হলে, বামপক্ষ = $\sqrt{-8+8}-2\sqrt{-4+5}+2=0-2\times 1+2=0=$ ডানপক্ষ

∴ নির্ণেয় সমাধান x = 4, -4.

উদাহরণ ৩। সমাধান কর : $\sqrt{2x+9} - \sqrt{x-4} = \sqrt{x+1}$

সমাধান :
$$\sqrt{2x+9} - \sqrt{x-4} = \sqrt{x+1}$$

বা,
$$2x+9+x-4-2\sqrt{(2x+9)(x+4)}=x+1$$
 [বর্গ করে]

$$41, \ 2\sqrt{2x^2 + x - 36} = 2x + 4$$

$$41, \sqrt{2x^2 + x - 36} = x + 2$$

বা,
$$2x^2 + x - 36 = x^2 + 4x + 4$$
 [বর্গ করে]

$$4x - 3x - 40 = 0$$

$$4x + 5 = 0$$

শুদ্ধি পরীক্ষা : x = 8 হলে, বামপক্ষ = 5 - 2 = 3 এবং ডানপক্ষ = 3

অতএব, x=8 প্রদত্ত সমীকরণের একটি বীজ।

x=-5 গ্রহণযোগ্য নয়, কেননা সমীকরণে x=-5 বসালে ঋণাতাক সংখ্যার বর্গমূল আসে যা সংজ্ঞায়ি

∴ নির্ণেয় সমাধান x = 8

উদাহরণ 8। সমাধান কর : $\sqrt{(x-1)(x-2)} + \sqrt{(x-3)(x-4)} = \sqrt{2}$

সমাধান:
$$\sqrt{(x-1)(x-2)} + \sqrt{(x-3)(x-4)} = \sqrt{2}$$

$$\sqrt{x^2-3x+2}-\sqrt{2}=-\sqrt{x^2-7x+12}$$

বা,
$$x^2 - 3x + 2 - 2\sqrt{2}\sqrt{x^2 - 3x + 2} + 2 = x^2 - 7x + 12$$
 [বর্গ করে]

$$4x + \sqrt{2x^2 - 6x + 4} = 2x - 4$$

বা,
$$2x^2 - 6x + 4 = (2x - 4)^2 = 4x^2 - 16x + 16$$
 [বর্গ করে]

$$41, x^2 - 5x + 6 = 0$$

$$4$$
, $(x-2)(x-3)=0$

$$\therefore x=2$$
 অথবা $x=3$.

ণ্ডদ্ধি পরীক্ষা : x=2 হলে বামপক্ষ = $\sqrt{2}$ =ডানপক্ষ

$$x=3$$
 হলে, বামপক্ষ = $\sqrt{2}$ = ডানপক্ষ

∴ নির্ণেয় সমাধান
$$x = 2, 3$$

উদাহরণ ৫। সমাধান কর : $\sqrt{x^2-6x+15}-\sqrt{x^2-6x+13}=\sqrt{10}-\sqrt{8}$

সমাধান:
$$\sqrt{x^2-6x+15}-\sqrt{x^2-6x+13}=\sqrt{10}-\sqrt{8}$$

এখন $x^2 - 6x + 13 = y$ ধরলে প্রদত্ত সমীকরণ হবে

$$\sqrt{y+2} - \sqrt{y} = \sqrt{10} - \sqrt{8}$$

$$\sqrt{y+2} + \sqrt{8} = \sqrt{y} + \sqrt{10}$$

বা,
$$y + 2 + 8 + 2\sqrt{8y + 16} = y + 10 + 2\sqrt{10y}$$
 [বর্গ করে]

বা,
$$\sqrt{8y+16} = \sqrt{10y}$$

বা,
$$8y + 16 = 10y$$
 [বর্গ করে]

বা,
$$2y = 16$$
 বা, $y = 8$

বা,
$$x^2 - 6x + 13 = 8$$
 [y এর মান বসিয়ে]

$$4x + 5 = 0$$
 $4x + 5 = 0$ $4x + 5 = 0$

∴ x=1 অথবা 5.

শুদ্দি পরীক্ষা : x=1 হলে, বামপক্ষ $=\sqrt{10}-\sqrt{8}=$ ডানপক্ষ

$$x = 5$$
 হলে, বামপক্ষ= $\sqrt{10} - \sqrt{8}$ = ডানপক্ষ

 \therefore নির্ণেয় সমাধান x = 1, 5

উদাহরণ ৬। সমাধান কর : $(1+x)^{\frac{1}{3}} + (1-x)^{\frac{1}{3}} = 2^{\frac{1}{3}}$

সমাধান:
$$(1+x)^{\frac{1}{3}}+(1-x)^{\frac{1}{3}}=2^{\frac{1}{3}}$$

$$\Rightarrow 1 + x + 1 - x + 3(1 + x)^{\frac{1}{3}}(1 - x)^{\frac{1}{3}}\left\{(1 + x)^{\frac{1}{3}} + (1 - x)^{\frac{1}{3}}\right\} = 2$$
 [ঘন করে]

$$\boxed{4}, \ 2 + 3(1+x)^{\frac{1}{3}}(1-x)^{\frac{1}{3}}2^{\frac{1}{3}} = 2$$

$$\boxed{4}, \ 3.2^{\frac{1}{3}} (1+x)^{\frac{1}{3}} (1-x)^{\frac{1}{3}} = 0$$

$$\boxed{1, (1+x)^{\frac{1}{3}}(1-x)^{\frac{1}{3}}} = 0$$

বা, (1+x)(1-x)=0 [আবার ঘন করে]

x=1 এবং x=-1 উভয়ই সমীকরণটিকে সিদ্ধ করে।

∴ নির্ণেয় সমাধান x = ±1

অনুশীলনী ৫.২

সমাধান কর:

$$\begin{array}{llll} 3 & & \sqrt{x-4}+2=\sqrt{x+12} & & 9 & & \sqrt{x^2-6x+9}-\sqrt{x^2-6x+6}=1 \\ 2 & & \sqrt{11x-6}=\sqrt{4x+5}-\sqrt{x-1} & & \forall 1 & \sqrt{2x^2+5x-2}-\sqrt{2x^2+5x-9}=1 \\ 0 & & \sqrt{2x+7}+\sqrt{3x-18}=\sqrt{7x+1} & & \forall 1 & \sqrt{2}\frac{x^2+5x-2}-\sqrt{2}\frac{x^2+5x-9}=1 \\ 8 & & \sqrt{x+4}+\sqrt{x+11}=\sqrt{8x+9} & & \forall 1 & \sqrt{\left(\frac{2x}{x-1}\right)}+5\sqrt{\left(\frac{x-1}{2x}\right)}=13 \\ 0 & & \sqrt{11x-6}=\sqrt{4x+5}+\sqrt{x-1} & & \forall 0 & 1 & \sqrt{\left(\frac{x-1}{3x+2}\right)}+2\sqrt{\left(\frac{3x+2}{x-1}\right)}=3 \\ 0 & & \sqrt{x^2+4x-4}+\sqrt{x^2+4x-10}=6 \end{array}$$

৫.৩ সূচক সমীকরণ (Indicial Equation)

যে সমীকরণে অজ্ঞাত চলক সূচকরূপে থাকে, তাকে সূচক সমীকরণ বলে।

 $2^x = 8$, $16^x = 4^{x+2}$. $2^{x+1} - 2^x - 8 = 0$ ইত্যাদি সমীকরণগুলো সূচক সমীকরণ যেখানে x অজ্ঞাত চলক। সূচক সমীকরণ সমাধান করতে সূচকের নিম্নলিখিত ধর্মটি প্রায়ই ব্যবহার করা হয়ঃ

 $a \neq 1$ হলে $a^x = a^m$ হবে যদি ও কেবল যদি x = m হয়। এ জন্য প্রথমে সমীকরণের উভয় পক্ষকে সংখ্যার ঘাত বা শক্তিরূপে প্রকাশ করা হয় :

কাজ: ১। 4096 কে
$$\frac{1}{2}$$
, 2, 4, 8, 16, $2\sqrt{2}$, $\sqrt[3]{4}$ এর সূচকে প্রকাশ কর।

২। 729 কে 3, 9, 27, 16,
$$\sqrt[5]{9}$$
 এর সূচকে লিখ।

ত।
$$\frac{64}{729}$$
 কে $\frac{3}{2}$, $\sqrt[3]{\frac{3}{2}}$ এর সূচকে প্রকাশ কর।

উদাহরণ ১। সমাধান কর $2^{x+7} = 4^{x+2}$

সমাধান ঃ $2^{x+7} = 4^{x+2}$

$$\boxed{4}, \ 2^{x+7} = (2^2)^{x+2}$$

বা,
$$2^{x+7} = 2^{2x+4}$$

$$x + 7 = 2x + 4$$

বা,
$$x=3$$

∴ নির্ণেয় সমাধান,
$$x = 3$$
.

উদাহরণ ২। সমাধান কর $3.27^x = 9^{x+4}$

সমাধান ঃ $3.27^x = 9^{x+4}$

বা,
$$3.(3^3)^x = (3^2)^{x+4}$$

$$\boxed{3.3^{3x} = 3^{2(x+4)}}$$

বা,
$$3^{3x+1} = 3^{2x+8}$$

$$3x + 1 = 2x + 8$$

বা,
$$x = 7$$

∴নির্ণেয় সমাধান
$$x = 7$$

উদাহরণ ৩। সমাধান কর ঃ $3^{mx-1} = 3a^{mx-2}$, $(a > 0, a \neq 3, m \neq 0)$

সমাধান ঃ $3^{mx-1} = 3a^{mx-2}$

বা,
$$\frac{3^{mx-1}}{3} = a^{mx-2}$$
 [উভয় পক্ষকে 3 দ্বারা ভাগ করে]

বা,
$$3^{mx-2} = a^{mx-2}$$

$$\overline{4}, \left(\frac{a}{3}\right)^{mx-2} = 1 = \left(\frac{a}{3}\right)^0$$

বা,
$$mx - 2 = 0$$

বা,
$$mx = 2$$

বা,
$$x = \frac{2}{m}$$

∴ নির্ণেয় সমাধান
$$x = \frac{2}{m}$$

উদাহরণ 8। সমাধান কর :
$$2^{3x-5}$$
. $a^{x-2}=2^{x-3}.2a^{1-x}$, $(a>0$ এবং $a\neq \frac{1}{2}$)

সমাধান:
$$2^{3x-5}$$
. $a^{x-2} = 2^{x-3} \cdot 2a^{1-x}$

$$\overline{a}, \ \frac{a^{x-2}}{a^{1-x}} = \frac{2^{x-3} \cdot 2^1}{2^{3x-5}} \qquad \overline{a}, \ a^{x-2-1+x} = 2^{x-3+1-3x+5}$$

$$4$$
, $(2a)^{2x-3} = 1 = (2a)^0$

∴
$$2x-3=0$$
 বা, $2x=3$ বা, $x=\frac{3}{2}$

∴ নির্ণেয় সমাধান
$$x = \frac{3}{2}$$

উদাহরণ ৫। সমাধান কর ৪
$$a^{-x}(a^x+b^{-x})=\frac{a^2b^2+1}{a^2b^2}, (a>0, b>0)$$
 এবং $ab\ne 1$)

সমাধান ঃ
$$a^{-x}(a^x+b^{-x})=1+\frac{1}{a^2b^2}$$

$$4 + (ab)^{-x} = 1 + (ab)^{-2}$$

বা,
$$(ab)^{-x} = (ab)^{-2}$$

$$\therefore -x = -2$$

∴ নির্ণেয় সমাধান
$$x = 2$$

উদাহরণ ৬। সমাধান কর
$$3^{x+5} = 3^{x+3} + \frac{8}{3}$$

সমাধান ঃ
$$3^{x+5} = 3^{x+3} + \frac{8}{3}$$

$$\overline{4}$$
1, $3^x.3^5 = 3^x3^3 + \frac{8}{3}$

বা,
$$3^x.3^6 - 3^x.3^4 = 8$$
 [পক্ষান্তর এবং উভয় পক্ষে 3 দ্বারা গুণ করে]

$$41, 3^x.3^4 (3^2-1)=8$$

বা,
$$3^{x+4}.8 = 8$$

বা,
$$3^{x+4} = 1 = 3^0$$

∴
$$x + 4 = 0$$
 বা, $x = -4$

∴নির্ণেয় সমাধান x = -4

উদাহরণ ৭। সমাধান কর $3^{2x-2} - 5.3^{x-2} - 66 = 0$

সমাধান ঃ $3^{2x-2} - 5.3^{x-2} - 66 = 0$

$$\boxed{4}, \ \frac{3^{2x}}{9} - \frac{5}{9}.3^x - 66 = 0$$

বা, $3^{2x} - 5.3^x - 594 = 0$ [উভয় পক্ষে 9 দ্বারা গুণ করে]

বা,
$$a^2 - 5a - 594 = 0$$
 (3^x = a ধরে)

$$a^2 - 27a + 22a - 594 = 0$$

$$\overline{a}$$
, $(a-27)(a+22)=0$

এখন $a \neq -22$, কেননা $a = 3^x > 0$ সুতরাং $a + 22 \neq 0$

বা,
$$3^x = 27 = 3^3$$

$$\therefore x = 3$$

নির্ণেয় সমাধান x=3

উদাহরণ ৮। সমাধান কর ঃ $a^{2x} - (a^3 + a)a^{x-1} + a^2 = 0(a > 0, a \ne 1)$

সমাধান ঃ
$$a^{2x} - (a^3 + a) a^{x-1} + a^2 = 0$$

বা,
$$p^2 - (a^2 + 1)p + a^2 = 0$$
 ($a^x = p$ ধরে)

বা,
$$(p-1)(p-a^2)=0$$

$$p=1$$
 অথবা $p=a^2$

বা,
$$a^x = 1 = a^0$$
 বা $a^x = a^2$

$$\therefore x = 0$$
 $\therefore x = 2$

 \therefore নির্ণেয় সমাধান x = 0, 2

অনুশীলনী ৫.৩

সমাধান কর:

$$3^{x+2} = 81$$

$$3x-7 = 3^{3x-7} = 3^{3x-7}$$

$$brack 4^{x+2} = 2^{2x+1} + 14$$

$$\lnot i$$
, $(x-y)(x+2)=0$ ∴ $x=y$ (iii)

বা,
$$x = -2$$
 (iv)

(iii) ও (i) থেকে আমরা পাই,
$$y^2 = 9y$$
 বা, $y(y-9)=0$ ∴ $y=0$ অথবা 9

$$(iii)$$
 থেকে, যখন $y=0$ তখন $x=0$ এবং যখন $y=9$, তখন $x=9$

আমরা (iv) ও (i) থেকে আমরা পাই,
$$x = -2$$
 এবং $4 = -6 + 6y$ বা, $6y = 10$ বা, $y = \frac{5}{3}$

∴ নির্ণেয় সমাধান
$$(x, y) = (0, 0), (9, 9), (-2, \frac{5}{3})$$

উদাহরণ ৩। সমাধান কর $x^2 + y^2 = 61$, xy = -30

সমাধান:
$$x^2 + y^2 = 61$$
 (i) $xy = -30$

$$i) \qquad xy = -30 \qquad (i)$$

(ii) কে 2 দ্বারা গুণ করে (i) থেকে বিয়োগ করলে আমরা পাই,
$$(x-y)^2=121$$
 (iii)

বা,
$$x - y = \pm 11$$
 (iv)

(iii) ও (iv) থেকে,

সমাধান করে পাই.

(v) থেকে,
$$x = 6$$
, $y = -5$; (vi) থেকে $x = -5$, $y = 6$

(vii) থেকে,
$$x = 5$$
, $y = -6$ (viii) থেকে, $x = -6$, $y = 5$

∴ নির্ণেয় সমাধান
$$(x, y) = (6, -5), (-5, 6), (5, -6), (-6, 5)$$

উদাহরণ 8। সমাধান কর $x^2 - 2xy + 8y^2 = 8$, $3xy - 2y^2 = 4$

সমাধান ঃ
$$x^2 - 2xy + 8y^2 = 8$$
, (i) $3xy - 2y^2 = 4$ (ii)

(i) এবং (ii) থেকে আমরা পাই.

$$\frac{x^2 - 2xy + 8y^2}{3xy - 2y^2} = \frac{2}{1} \text{ (a)}, \quad x^2 - 2xy + 8y^2 = 6xy - 4y^2$$

$$41, x^2 - 8xy + 12y^2 = 0$$

$$41, x^2 - 6xy + 2xy + 12y^2 = 0$$

বা,
$$(x-6y)(x-2y)=0$$
 : $x=6y$ (iii) অথবা $x=2y$ (iv)

(iii) থেকে, x এর মান (ii) এ বসিয়ে আমরা পাই,

$$3.6y.y-2y^2=4$$
 বা, $16y^2=4$ বা, $y^2=\frac{1}{4}$ বা, $y=\pm\frac{1}{2}$

(iii) থেকে,
$$x = 6 \times \left(\pm \frac{1}{2}\right) = \pm 3$$
.

আবার (iv) থেকে x এর মান (ii) এ বসিয়ে আমরা পাই,

$$3.2y.y - 2y^2 = 4$$

বা,
$$4v^2 = 4$$
 বা, $v^2 = 1$

বা,
$$y^2 = 1$$

বা,
$$y = \pm 1$$

(iv) থেকে
$$x = 2 \times (\pm 1) = \pm 2$$

∴ নির্ণেয় সমাধান
$$(x,y)=\left(3,\frac{1}{2}\right),\left(-3,-\frac{1}{2}\right)(2,1)(-2,-1)$$

উদাহরণ ৫। সমাধান কর ঃ
$$\frac{x+y}{x-y} + \frac{x-y}{x+y} = \frac{5}{2}$$
, $x^2 + y^2 = 90$

সমাধান ঃ
$$\frac{x+y}{x-y} + \frac{x-y}{x+y} = \frac{5}{2}$$
 (i) $x^2 + y^2 = 90$ (ii)

(i) থেকে আমরা পাই.

$$\frac{(x+y)^2 + (x-y)^2}{(x+y)(x-y)} = \frac{5}{2}$$

$$41, \frac{2(x^2+y^2)}{x^2+y^2} = \frac{5}{2}$$

$$\therefore \frac{2 \times 90}{x^2 - y^2} = \frac{5}{2} [(ii)$$
 থেকে $x^2 + y^2 = 90$ বসিয়ে]

$$\vec{a}, \ x^2 - y^2 = 72 \qquad (iii)$$

(ii)+(iii) নিলে,
$$2x^2 = 162$$
 বা, $x^2 = 81$ বা, $x = \pm 9$

এবং (ii)-(iii) নিলে,
$$2y^2 = 18$$
 বা, $y^2 = 9$ বা, $y = \pm 3$

∴ নির্ণেয় সমাধান
$$(x,y)=(9,3),(9,-3),(-9,3),(-9,-3)$$

কাজ :

উদাহরণ ২ এবং ৩ এর সমাধান বিকল্প পদ্ধতিতে নির্ণয় কর।

অনুশীলনী ৫.8

সমাধান কর ঃ

$$3 + (2x+3)(y-1) = 14$$
, $(x-3)(y-2) = -1$

$$(x-2)(y-1)=3$$
, $(x+2)(2y-5)=15$

$$\circ \mid x^2 = 7x + 6y, \ y^2 = 7y + 6x$$

$$8 + x^2 = 73x + 2v$$
, $v^2 = 3v + 2x$

$$\alpha \mid x + \frac{4}{y} = 1, y + \frac{4}{x} = 25$$

$$6 | y+3=\frac{4}{x}, x-4=\frac{5}{3y}$$

$$9 + xy - x^2 = 1$$
, $y^2 - xy = 2$

$$b + x^2 - xy = 14$$
, $y^2 + xy = 60$

$$\delta + x^2 + y^2 = 25$$
, $xy = 12$

$$50 \mid \frac{x+y}{x-y} + \frac{x-y}{x+y} = \frac{10}{3}, x^2 - y^2 = 3$$

$$x^2 + xy + y^2 = 3$$
, $x^2 - xy + y^2 = 7$

$$32 + 2x^2 + 3xy + y^2 = 20, 5x^2 + 4y^2 = 41$$

৫.৫ দ্বিঘাত সহসমীকরণের ব্যবহার

সহসমীকরণের ধারনা ব্যবহার করে দৈনন্দিন জীবনের বহু সমস্যার সমাধান করা যায়। অনেক সময় সমস্যায় দুইটি অঞ্জাত রাশির মান নির্ণয় করতে হয়। সেক্ষেত্রে অজ্ঞাত রাশি দুইটির মান x এবং y বা অন্য যেকোন দুইটি স্বতন্ত্র প্রতীক ধরতে হয়। তারপর সমস্যার শর্ত বা শর্তগুলো থেকে পরস্পর অনির্ভর, সঙ্গতিপূর্ণ সমীকরণ গঠন করে সমীকরণ জোটের সমাধান করলেই x এবং y অজ্ঞাত রাশিগুলোর মান নির্ণয় করা যায়।

উদাহরণ ১। দুইটি বর্গক্ষেত্রের ক্ষেত্রফলের সমষ্টি 650 বর্গমিটার। ঐ দুইটি বর্গক্ষেত্রের দুই বাহু দ্বারা গঠিত আয়তক্ষেত্রের ক্ষেত্রফল 323 বর্গমিটার হলে, বর্গক্ষেত্র দুইটির প্রত্যেক বাহুর পরিমান কত?

সমাধান: মনে করি, একটি বর্গক্ষেত্রের বাহুর পরিমাণ x মিটার এবং অপরটির বাহুর পরিমাণ y মিটার।

প্রশ্নমতে,
$$x^2 + y^2 = 650$$
(i)

এবং xy = 323(ii)

$$\therefore (x+y)^2 = x^2 + y^2 + 2xy = 650 + 646 = 1296$$

অর্থাৎ
$$(x+y) = \pm \sqrt{1296} = \pm 36$$

এবং
$$(x-y)^2 = x^2 + y^2 - 2xy = 650 - 646 = 4$$

অৰ্থাৎ
$$(x-y)=\pm 2$$

যেহেতু দৈর্ঘ্য ধনাতা্রক, সেহেতু (x+y)এর মান ধনাতা্রক হতে হবে।

$$\therefore (x+y) = 36....(iii)$$

$$(x-y) = \pm 2$$
....(iv)

যোগ করে, $2x = 36 \pm 2$

$$\therefore x = \frac{36 \pm 2}{2} = 18 \pm 1 = 19 \text{ } \text{ } \text{ } \text{ } \text{ } 17$$

সমীকরণ (iii) থেকে পাই, y = 36 - x = 17 বা, 19.

∴ একটি বর্গক্ষেত্রের বাহুর পরিমাণ 19 মিটার এবং অপর বর্গক্ষেত্রের বাহুর পরিমাণ 17 মিটার।

উদাহরণ ২। একটি আয়তক্ষেত্রের দৈর্ঘ্য তার প্রস্থের দিগুণ অপেক্ষা 10 মিটার কম। আয়তক্ষেত্রের ক্ষেত্রফল 600 বর্গমিটার হলে, এর দৈর্ঘ্য নির্ণয় কর।

সমাধান : মনে করি, আয়তক্ষেত্রের দৈর্ঘ্য= x মিটার এবং আয়তক্ষেত্রের প্রস্থ = y মিটার

প্রশ্নমতে,
$$2y = x + 10$$
(i)

$$xy = 600....(ii)$$

সমীকরণ (i) থেকে পাই,
$$y = \frac{10+x}{2}$$

সমীকরণ (ii) এ y এর মান বসিয়ে পাই, $\frac{x(10+x)}{2} = 600$

$$\overline{10x + x^2} = 600 \quad \overline{10x} = 1200$$

$$41, x^2 + 10x - 1200 = 0 = 0 = 0$$

সুতরাং,
$$(x+40)=0$$
 অথবা $(x-30)=0$

অর্থাৎ,
$$x = -40$$
 বা, $x = 30$

কিন্তু দৈর্ঘ্য ঋণাত্মক হতে পারে না.

- $\therefore x = 30$
- ∴ আয়ৢতক্ষেত্রের দৈর্ঘ্য = 30 মিটার।

উদাহরণ ৩। দুই অঙ্কবিশিষ্ট একটি সংখ্যাকে অঙ্কদ্বয়ের গুণফল দ্বারা ভাগ করলে ভাগফল হয় 3. সংখ্যাটির সাথে 18 যোগ করলে অঙ্কদ্বয় স্থান বিনিময় করে। সংখ্যাটি নির্ণয় কর।

সমাধান \mathbf{s} মনে করি, দশক স্থানীয় অঙ্ক = x এবং একক স্থানীয় অঙ্ক y

প্রথম শর্তানুসারে ,
$$\frac{10x+y}{xy}=3$$
 বা, $10x+y=3xy$(i)

দ্বিতীয় শর্তানুসারে , 10x+y+18=10y+x বা, 9x-9y+18=0

$$\forall i, x-y+2=0 \ \forall i, y=x+2....(ii)$$

সমীকরণ (i) এ y = x + 2 বসিয়ে পাই, 10x + x + 2 = 3.x(x + 2)

$$4$$
, $11x + 2 = 3.x^2 + 6x$

$$\exists 1, \ 3x^2 - 5x - 2 = 0$$

$$\exists 1, \ 3x^2 - 6x + x - 2 = 0$$

$$\exists 1, \ 3x(x-2)+1(x-2)=0$$

$$\triangleleft$$
1, $(x-2)(3x+1)=0$

সুতরাং
$$(x-2) = 0$$
 অথবা $(3x+1) = 0$ বা, $3x = -1$

অর্থাৎ,
$$x = 2$$
 বা, $x = -\frac{1}{3}$

কিন্তু সংখ্যার অঙ্ক ঋণাত্মক বা ভগ্নাংশ হতে পারে না।

সুতরাং
$$x = 2$$
 এবং $y = x + 2 = 2 + 2 = 4$

∴ সংখ্যাটি 24

প্রশ্নমালা ৫-৫

- ১। দুইটি বর্গক্ষেত্রের ক্ষেত্রফলের সমষ্টি 481 বর্গমিটার। ঐ দুইটি বর্গক্ষেত্রের দুই বাহু দ্বারা গঠিত আয়তক্ষেত্রের ক্ষেত্রফল 240 বর্গমিটার হলে . বর্গক্ষেত্র দুইটির প্রত্যেক বাহুর পরিমাণ কত ?
- ২। দুইটি ধনাতাক সংখ্যার বর্গের সমষ্টি 250 । সংখ্যা দুইটির গুণফল 117, সংখ্যা দুইটি নির্ণয় কর ।
- একটি আয়তক্ষেত্রের কর্ণের দৈর্ঘ্য 10 মিটার । ইহার বাহুদ্বয়ের যোগফল ও বিয়োগফলের সমান দৈর্ঘ্য বিশিষ্ট বাহুদ্বয় দ্বারা অঙ্কিত আয়তক্ষেত্রের ক্ষেত্রফল 28 বর্গমিটার হলে, প্রথম আয়তক্ষেত্রটির দৈর্ঘ্য ও প্রস্থ নির্ণয় কর ।
- 8। দুইটি সংখ্যার বর্গের সমষ্টি 181 এবং সংখ্যা দুইটির গুণফল 90, সংখ্যা দুইটির বর্গের অন্তর নির্ণয় কর ।
- ৫। একটি আয়তক্ষেত্রের ক্ষেত্রফল 24 বর্গমিটার। অপর একটি আয়তক্ষেত্রের দৈর্ঘ্য ও প্রস্থ প্রথম আয়তক্ষেত্রের দৈর্ঘ্য ও প্রস্থ অপেক্ষা যথাক্রমে 4 মিটার এবং 1 মিটার বেশি এবং ক্ষেত্রফল 50 বর্গমিটার। প্রথম আয়তক্ষেত্রের দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।

- ৬। একটি আয়তক্ষেত্রের প্রস্থের দ্বিগুণ দৈর্ঘ্য অপেক্ষা 23 মিটার বেশি। আয়তক্ষেত্রের ক্ষেত্রফল 600 বর্গমিটার হলে, তার দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।
- ৭। একটি আয়তক্ষেত্রের পরিসীমা কর্ণদ্বয়ের দৈর্ঘ্যের সমষ্টি অপেক্ষা ৪ মিটার বেশি। ক্ষেত্রেটির ক্ষেত্রফল 48
 বর্গমিটার হলে, তার দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।
- ৮। দুই অঙ্কবিশিষ্ট একটি সংখ্যাকে এর অঙ্কদ্বয়ের গুণফল দ্বারা ভাগ করলে ভাগফল 2 হয় । সংখ্যাটির সাথে 27 যোগ করলে অঙ্কদ্বয় স্থান বিনিময় করে। সংখ্যাটি নির্ণয় কর।
- ৯। একটি আয়তকার বাগানের পরিসীমা 56 মিটার এবং কর্ণ 20 মিটার। ঐ বাগানের সমান ক্ষেত্রফলবিশিষ্ট বর্গক্ষেত্রের এক বাহুর দৈর্ঘ্য কত ?
- ১০। একটি আয়তক্ষেত্রের ক্ষেত্রফল 300 বর্গমিটার এবং এর অর্ধপরিসীমা একটি কর্ণ অপেক্ষা 10 মিটার বেশি। ক্ষেত্রটির দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।

৫.৬। দুই চলকবিশিষ্ট সূচক সমীকরণ জোট

পূর্ববর্তী অধ্যায়ে এক চলকবিশিষ্ট সূচক সমীকরণের সমাধান নির্ণয় সম্পর্কে আলোচনা করা হয়েছে। দুই চলকবিশিষ্ট সূচকীয় সমীকরণ জোটের সমাধান নির্ণয় করা সম্পর্কে এখানে আলোচনা করা হলো।

উদাহরণ ১। সমাধান কর : a^{x+2} . $a^{2y+1}=a^{10}$, $a^{2x}.a^{y+1}=a^9(a\neq 1)$

সমাধান:
$$a^{x+2}$$
. $a^{2y+1} = a^{10}$ (i) $a^{2x}.a^{y+1} = a^9$ (ii)

(i) থেকে
$$a^{x+2y+3} = a^{10}$$
 বা, $x+2y+3=10$ বা, $x+2y-7=0$ (iii)

(ii) থেকে,
$$a^{2x+y+1} = a^9$$
 বা, $2x + y + 1 = 9$ বা, $2x + y - 8 = 0$ (iv)

(iii) ও (iv) থেকে বজ্রগুণন পদ্ধতি অনুসারে,

$$\frac{x}{-16+7} = \frac{y}{-14+8} = \frac{1}{1-4}$$

$$\frac{x}{-9} = \frac{y}{-6} = \frac{1}{-3}$$

বা,
$$\frac{x}{3} = \frac{y}{2} = 1$$

বা,
$$x = 3$$
, $y = 2$

∴ নির্ণেয় সমাধান
$$(x,y)=(3,2)$$

উদাহরণ ২। সমাধান কর : $3^{3y-1} = 9^{x+y}$, $4^{x+3y} = 16^{2x+3}$

সমাধান:
$$3^{3y-1} = 9^{x+y}$$
 (i)

$$\boxed{4}, \ 3^{3y-1} = \left(3^2\right)^{x+y} = 3^{2x+2y}$$

$$\therefore 3y-1=2x+2y$$

বা,
$$2x - y + 1 = 0$$
 (iii)

$$4^{x+3y} = 16^{2x+3}$$
 (ii)

$$4x + 3y = 4x + 6$$
 $4x + 6$ $4x + 6 = 0$

$$4x - y + 2 = 0$$
 (iv)

(iii) ও (iv) থেকে বজ্রগুণন পদ্ধতি অনুসারে,

$$\frac{x}{-2+1} = \frac{y}{1-4} = \frac{1}{-2+1}$$

$$\overline{a}$$
, $\frac{x}{-1} = \frac{y}{-3} = -1$

বা,
$$x = 1$$
, $y = 3$

উদাহরণ ৩। সমাধান কর : $x^y = y^x$, x = 2y

সমাধান:
$$x^y = y^x$$
 (i) $x = 2y$ (ii) এখানে $x \neq 0, y \neq 0$

(ii) থেকে x এর মান (i) এ বসিয়ে পাই,
$$(2y)^y = y^{2y}$$
 বা, $2^y \cdot y^y = y^{2y}$

বা,
$$\frac{y^{2y}}{v^y} = 2^y$$
 বা, $y^y = 2^y$: $y = 2$ (ii) থেকে, $x = 4$

∴ নির্ণেয় সমাধান
$$(x,y)=(4,2)$$

উদাহরণ 8। সমাধান কর : $x^y = y^2$, $y^{2y} = x^4$, যেখানে $x \neq 1$

সমাধান:
$$x^y = y^2$$
 (i), $y^{2y} = x^4$ (ii)

(i) থেকে পাই,

$$(x^y)' = (y^2)''$$
 $\forall i, x^{y^2} = y^{2y}$ (iii)

(iii) ও (ii) থেকে পাই,
$$x^{y^2} = x^4$$

এখন
$$v = 2$$
 হলে (i) থেকে পাই, $x^2 = 2^2 = 4$ বা, $x = \pm 2$

আবার,
$$y = -2$$
 হলে, (i) থেকে পাই, $(x)^2 = (-2)^2 = 4$

$$\overline{1}$$
, $\frac{1}{x^2} = 4$ $\overline{1}$, $x^2 = \frac{1}{4}$ $\overline{1}$, $x = \pm \frac{1}{2}$

∴ নির্পেয় সমাধান
$$(x,y)=(2,2),(-2,2),(\frac{1}{2},-2),(-\frac{1}{2},-2)$$

উদাহরণ ৫। সমাধান কর :
$$8.2^{xy} = 4^y$$
, $9^x.3^{xy} = \frac{1}{27}$

সমাধান:
$$8.2^{xy} = 4^y$$
 (i), $9^x.3^{xy} = \frac{1}{27}$ (ii)

(i) থেকে পাই,
$$2^3.2^{xy} = (2^2)^y$$
 বা, $2^{3+xy} = 2^{2y}$ $\therefore 3+xy=2y$ (iii)

(ii) থেকে পাই,
$$(3^2)' \cdot 3^{xy} = \frac{1}{3^3}$$
 বা, $3^{2x+xy} = 3^{-3}$ $\therefore 2x + xy = -3$ (iv)

(iii) থেকে (iv) বিয়োগ করে পাই,
$$3-2x=2y+3$$
 বা, $-x=y$

(v) থেকে v এর মান (iii) এ বসিয়ে পাই,
$$3 - x^2 = -2x$$

$$\boxed{1}, x^2 - 2x - 3 = 0 \qquad \boxed{1}, (x+1)(x-3) = 0$$

$$x=-1$$
 হলে (v) থেকে পাই, $y=1; x=3$ হলে (v) থেকে পাই, $y=-3$

∴ নির্ণেয় সমাধান
$$(x,y)=(-1,1)(3,-3)$$

উদাহরণ ৬। সমাধান কর : $18y^x - y^{2x} = 81$, $3^x = y^2$

সমাধান:
$$18y^x - y^{2x} = 81$$
, (i) $3^x = y^2$ (ii)

(i) থেকে পাই,
$$y^{2x} - 18y^x + 81 = 0$$
 বা, $(y^x - 9)^2 = 0$

বা,
$$y^x - 9 = 0$$
 বা, $y^x = 3^2$ (iii)

(ii) থেকে পাই,
$$(3^x)^5 = (y^2)^5$$
 বা, $3^{x^2} = y^{2x}$ (iv)

(iii) থেকে পাই,
$$(yx)^2 = (3^2)^2$$
 বা, $y^{2x} = 3^4$ (v)

(iv) ও (v) থেকে পাই,
$$3^{x^2} = 3^4$$
 $\therefore x^2 = 4$ বা, $x = \pm 2$

$$x = 2$$
 হলে (ii) থেকে পাই, $y^2 = 9$ বা, $y = \pm 3$

$$x=-2$$
 হলে (iii) থেকে পাই, $y^{-2}=9$ বা, $y^2=\frac{1}{9}$ বা, $y=\pm\frac{1}{3}$

$$\therefore$$
 নির্ণেয় সমাধান $(x,y)=(2,3)$, $(2,-3)$, $(-2,\frac{1}{3})$, $(-2,-\frac{1}{3})$

অনুশীলনী–৫.৬

সমাধান কর:

$$2^{x} + 3^{y} = 31$$
 $2^{x} - 3^{y} = -23$ $2^{x} - 3^{y} = -23$ $2^{x} - 3^{y} = 25^{xy}$ $2^{x} - 3^{y} = 81$

$$8 \mid 2^{x}.3^{y} = 18
 2^{2x}.3^{y} = 36$$

$$a^{x}.a^{y+1} = a^{7}$$

 $a^{2y}.a^{3x+5} = a^{20}$

$$\begin{cases} y^x = x^2 \\ x^{2x} = y^4 \end{cases} \quad y \neq 1$$

$$y^x = 4$$
$$y^2 = 2^x$$

$$b' + 4^x = 2^y$$

$$(27)^{xy} = 9^{y+1}$$

$$8y^x - y^{2x} = 16$$
$$2^x = y^2$$

ে৭ লেখচিত্রের সাহায্যে দ্বিঘাত সমীকরণ $ax^2 + bx + c = 0$ এর সমাধান

দ্বিঘাত সমীকরণ $ax^2 + bx + c = 0$ এর সমাধান আমরা ইতোপূর্বে বীজগণিতীয় পদ্ধতিতে শিখেছি। এখন লেখচিত্রের সাহায্যে ইহার সমাধান পদ্ধতি আলোচনা করা হবে।

মনে করি $y=ax^2+bx+c$. তাহলে x এর যে সকল মানের জন্য y=0 হবে অর্থাৎ লেখচিত্রটি x -অক্ষকে ছেদ করবে, x এর ঐ সকল মান-ই $ax^2+bx+c=0$ সমীকরণটির সমাধান।

উদাহরণ $\mathbf{3}$ । লেখচিত্রের সাহায্যে $x^2 - 5x + 4 = 0$ এর সমাধান কর।

সমাধান : মনে করি, $y = x^2 - 5x + 4$.

x এর কয়েকটি মানের জন্য y এর মান নির্ণয় করে এই সমীকরণের লেখের কয়েকটি বিন্দুর স্থানাংক নির্ণয় করি :

x	0	1	2	2.5	3	4	5
y	4	0	-2	-2.25	-2	0	4

উপরের সারণিতে প্রদপ্ত বিন্দুগুলো ছক কাগজে স্থাপন করে সমীকরণটির লেখচিত্র অঙ্কন করি। দেখা যায় যে লেখচিত্রটি x -অক্ষকে (1,0) ও (4,0) বিন্দুতে ছেদ করেছে।

সূতরাং, সমীকরণটির সমাধান x = 1 বা x = 4.

উদাহরণ ২। লেখচিত্রের সাহায্যে $x^2 - 4x + 4 = 0$ এর সমাধান কর।

সমাধান : মনে করি, $y = x^2 - 4x + 4$.

x এর কয়েকটি মানের জন্য y এর মান নির্ণয় করে লেখচিত্রের জন্য কয়েকটি বিন্দুর স্থানাংক নির্ণয় করি ঃ

x	0	1	1.5	2	2.5	3	4
y	4	1	0.25	0	0.25	1	4

উপরের সারণি হতে প্রাপ্ত বিন্দুগুলো ছক কাগজে স্থাপন করে সমীকরণটির লেখচিত্র অঙ্কন করি। লেখচিত্রে দেখা যায় যে ইহা x-অক্ষকে $(2, \ 0)$ বিন্দুতে স্পর্শ করেছে। যেহেতু দ্বিঘাত সমীকরণের দুইটি মূল থাকে, সেহেতু সমীকরণটির সমাধান হবে $x=2, \ x=2.$

উদাহরণ ৩। লেখচিত্রের সাহায্যে সমাধান কর ঃ $x^2 - 2x - 1 = 0$

সমাধান : মনে করি, $y = x^2 - 2x - 1$.

সমীকরণটির লেখচিত্র অঙ্কনের জন্য x এর কয়েকটি মান নিয়ে তাদের অনুরূপ y এর মান নির্ণয় করি :

x	-1	-0.5	0	0.5	1	1.5	2	2.5	3
y	2	0.25	-1	-1.75	-2	-1.75	-1	0.25	2

সারণিতে স্থাপিত বিন্দুগুলো ছক কাগজে স্থাপন করে সমীকরণটির লেখচিত্র অঙ্কন করি। দেখা যায় যে লেখচিত্রটি x-অক্ষকে মোটামুটিভাবে (-0.4, 0) ও (2.4, 0) বিন্দুতে ছেদ করেছে । সুতরাং, সমীকরণটির সমাধান x = -0.4 (আসন্ন) বা x = 2.4 (আসন্ন)।

উদাহরণ 8 । $-x^2 + 3x - 2 = 0$ এর মূলদ্বয় লেখচিত্রের সাহায্যে নির্ণয় কর।

সমাধান : মনে করি, $y = -x^2 + 3x - 2$.

x এর কয়েকটি মানের জন্য y এর মান নির্ণয় করে প্রদপ্ত সমীকরণের লেখের কয়েকটি বিন্দুর স্থানাংক নির্ণয় করি :

х	0	0.5	1	1.5	2	2.5	3
У	-2	-0.75	0	0.25	0	-0.75	-2

প্রাপ্ত বিন্দুগুলো ছক কাগজে স্থাপন করে সমীকরণটির লেখচিত্র অঙ্কন করি। দেখা যায় যে লেখচিত্রটি x- অক্ষের উপর (1,0) ও (2,0) বিন্দু দিয়ে গিয়েছে। সুতরাং সমীকরণটির সমাধান x=1 বা x=2.

অনুশীলনী ৫.৭

১। $ax^2 + bx + c = 0$ এবং a, b, c বাস্তব সংখ্যা হলে $x^2 - x - 12 = 0$ সমীকরণে b এর মান কোনটি?

ক. 0

খ. 1

গ. -1

ঘ. 3

২। $16^x = 4^{x+1}$ সমীকরণটির সমাধান কোনটি?

ক. 2

খ. 0

গ. 4

ঘ. 3

৩। $x^2 - x + 13 = 0$ হলে সমীকরণটির একটি মূল কোনটি?

$$\Phi$$
. $\frac{-1+\sqrt{-51}}{2}$

 $\forall . \quad \frac{-1-\sqrt{51}}{2}$

গ.
$$\frac{1+\sqrt{-51}}{2}$$

 $\overline{4}. \quad \frac{1+\sqrt{51}}{2}$

8। $y^x = 9$, $y^2 = 3^x$ হলে সঠিক সমাধান কোনটি?

$$\Phi$$
. (2, 3), (-2, $\frac{1}{9}$)

$$\forall$$
. $(2,-2), (3,\frac{1}{9})$

গ.
$$(2, \frac{1}{9}), (-2, 3)$$

$$\overline{\mathbf{q}}. \ (-2,-\frac{1}{9}), (2,3)$$

নিচের তথ্যের ভিত্তিতে ৫ ও ৬ নং প্রশ্নের উত্তর দাও :

দুইটি ধনাত্মক পূর্ণ সংখ্যার বর্গের অন্তর 11 এবং গুণফল 30।

৫। সংখ্যা দুইটি কি কি?

ক. 1 এবং 30

খ. 2 এবং 15

গ. 5 এবং 6

ঘ. 5 এবং -6

৬। সংখ্যা দুইটির বর্গের সমষ্টি কত?

ক. 1

খ. 5

গ. 61

ঘ. √41

৭। একটি সংখ্যা ও ঐ সংখ্যার গুণাতাক বিপরীত সংখ্যার সমষ্টি 6। সম্ভাব্য সমীকরণটি গঠন করলে হয়-

i
$$x + \frac{1}{x} = 6$$

$$ii \quad x^2 + 1 = 6x$$

iii
$$x^2 - 6x - 1 = 0$$

নিচের কোনটি সঠিক ?

ক. i ও ii

খ. i ও iii

গ. ii ও iii

ঘ. i, ii ও iii

৮। $2^{px-1} = 2q^{px-2}$ এর সমাধান কোনটি?

$$\overline{\Phi}$$
. $\frac{p}{2}$

휙. p

গ. -
$$\frac{p}{2}$$

ঘ. $\frac{2}{7}$

লেখচিত্রের সাহায্যে নিচের সমীকরণগুলোর সমাধান কর:

$$x^2 - 4x + 3 = 0$$
 $yo + x^2 + 2x - 3 = 0$ $yo + x^2 + 7x = 0$

$$30 + x^2 + 2x - 3 = 0$$

$$x^2 + 7x = 0$$

$$2x^2 - 7x + 3 = 0$$

১৩ \
$$2x^2 - 5x + 2 = 0$$

$$32 + 2x^2 - 7x + 3 = 0$$
 $30 + 2x^2 - 5x + 2 = 0$ $38 + x^2 + 8x + 16 = 0$

$$36 + x^2 + x - 3 = 0$$
 $36 + x^2 = 8$

$$x^2 = 8$$

- ১৭।একটি সংখ্যার বর্গের দ্বিগুণ সংখ্যাটির 5 গুণ থেকে 3 কম। কিন্তু ঐ সংখ্যাটির বর্গের 3 গুণ সংখ্যাটির 5 গুণ থেকে 3 বেশি ı
 - ক. উদ্দীপকের তথ্যগুলোর সাহায্যে সমীকরণ গঠন কর।
 - খ. সূত্র প্রয়োগ করে ১ম সমীকরণটি সমাধান কর।
 - গ. ২য় সমীকরণটি লেখচিত্রের সাহায্যে সমাধান কর।
- ১৮।জনাব আশফাক আলীর জমির ক্ষেত্রফল 0.12 হেক্টর। জমিটির অর্ধপরিসীমা এর একটি কর্ণ অপেক্ষা 20 মিটার বেশি। তিনি তাঁর জমি থেকে শ্যামবাবুর নিকট এক তৃতীয়াংশ বিক্রি করেন। শ্যাম বাবুর জমির দৈর্ঘ্য, প্রস্থ অপেক্ষা 5 মিটার বেশি।
 - ক. উদ্দীপকের আলোকে দুইটি সমীকরণ গঠন কর।
 - খ. আশফাক আলীর জমির দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।
 - গ. শ্যামবাবুর জমিটির কর্ণের দৈর্ঘ্য ও পরিসীমা নির্ণয় কর।

ষষ্ঠ অধ্যায়

অসমতা

সমীকরণ বা সমতা সম্পর্কে আমাদের ধারণা হয়েছে। কিন্তু বাস্তব জীবনে অসমতারও একটা বিস্তৃত ও গুরুত্বপূর্ণ ভূমিকা রয়েছে। দৈনন্দিন জীবনে প্রকৃতিতে আমরা যতকিছু দেখি তার কোনটির ক্ষেত্রেই এক জাতীয় দুইটি বস্তুর বা জীবজন্তুর বা দুইজন মানুষের যেকোনো ধরনের পরিমাপ হুবহু এক পাওয়া যায় না। এমনকি দেখতেও একই রকম হয় না। ফলে আমাদের অসমতার ধারণা প্রয়োজন হয়।

অধ্যায় শেষে শিক্ষার্থীরা –

- এক ও দুই চলকের এক ঘাত বিশিষ্ট অসমতা ব্যাখ্যা করতে পারবে।
- দুই চলকবিশিষ্ট সরল অসমতা গঠন ও সমাধান করতে পারবে।
- বাস্তবভিত্তিক গাণিতিক সমস্যায় অসমতা ব্যবহার করে সমাধান করতে পারবে।
- এক ও দুই চলকবিশিষ্ট অসমতাকে লেখচিত্রের সাহায্যে সমাধান করতে পারবে।

অসমতা

মনে করি একটি ক্লাশের ছাত্রসংখ্যা 200 জন। স্বাভাবিকভাবে দেখা যায় যে, ঐ ক্লাশে সবদিন সকলে উপস্থিত থাকে না। একটি নির্দিষ্ট দিনে উপস্থিত ছাত্র সংখ্যা x হলে আমরা লিখতে পারি $0 < x \le 200$ । একই ভাবে আমরা দেখি যে, কোনোও একটি নিমন্ত্রিত অনুষ্ঠানে সবাই উপস্থিত হয় না। পোশাক-পরিচ্ছদ ও অন্যান্য অনেক ভোগ্যপণ্য তৈরিতে পরিষ্কার ভাবে অসমতার ধারণা প্রয়োজন হয়। দালান তৈরির ক্ষেত্রে, পুস্তক মুদ্রণের ক্ষেত্রে এবং এরকম আরও অনেক ক্ষেত্রে উপাদানগুলো সঠিক পরিমাণে নির্ণয় করা যায় না বিধায় প্রথম পর্যায়ে অনুমানের ভিত্তিতে উপাদানগুলো ক্রয় বা সংগ্রহ করতে হয়। অতএব দেখা যাচ্ছে যে, আমাদের দৈনন্দিন জীবনে অসমতার ধারণাটা খুবই গুরুত্বপূর্ণ।

সমীকরণ সংক্রান্ত স্বতঃসিদ্ধ বা বিধিসমূহ অসমতার ক্ষেত্রেও প্রযোজ্য। শুধু ব্যতিক্রম হলো অসমান রাশিকে সমান সমান ঋণাত্মক সংখ্যা দ্বারা শুণ বা ভাগ করলে অসমতার দিক পাল্টে যায়।

4<6 অসমতাটি লক্ষ করি।</p>

∴ 4+2 < 6 + 2 বা, 6< 8 [উভয়পক্ষে 2 যোগ করে]</p>

তদ্রুপ 2 < 4 [উভয়পক্ষ থেকে 2 বিয়োগ করে]

তদ্রুপ 4<12 [উভয়পক্ষকে 2 দ্বারা গুণ করে]

তদ্রুপ 2<3 [উভয়পক্ষকে 2 দ্বারা ভাগ করে]

অসমতাটির উভয়পক্ষকে –2 দ্বারা গুণ করলে আলাদাভাবে পাওয়া যায় –8 এবং –12

এখানে -8>-12, তেমনি -2>-3 {উভয়পক্ষকে -4 দ্বারা ভাগ করে]

সাধারণভাবে বলা যায়, যদি a < b হয়, তবে,

a+c < b+c	c এর যেকোনো মানের জন্য
a-c < b-c ac < bc	c এর থেকোনো মানের জন্য c এর ধনাত্মক মানের জন্য
$\frac{a}{c} < \frac{b}{c}$	c এর ধনাত্মক মানের জন্য
কি ভ ac > bc	c এর ঋণাত্মক মানের জন্য
$\frac{a}{c} > \frac{b}{c}$	c এর ঋণাত্মক মানের জন্য

কাজ: ১। তোমাদের শ্রেণির যে সকল ছাত্র-ছাত্রীর উচ্চতা 5 ফুটের চেয়ে বেশি এবং 5 ফুটের চেয়ে কম তাদের উচ্চতা অসমতার মাধ্যমে প্রকাশ কর।

২। কোনো পরীক্ষার মোট নম্বর 1000 হলে, একজন পরীক্ষার্থীর প্রাপ্ত নম্বর অসমতার মাধ্যমে প্রকাশ কর।

উদাহরণ $\mathbf{3}$ । সমাধান কর ও সমাধান সেটটি সংখ্যারেখায় দেখাও: 4x + 4 > 16

সমাধান : দেওয়া আছে, 4x + 4 > 16

 $\therefore 4x + 4 - 4 > 16 - 4$

[উভয়পক্ষ থেকে 4 বিয়োগ করে]

বা, 4x > 12

বা, $\frac{4x}{4} > \frac{12}{4}$

[উভয়পক্ষকে 4 দ্বারা ভাগ করে]

বা, x > 3

∴ নির্ণেয় সমাধান x > 3

এখানে সমাধান সেট, $S = \{x \in R : x > 3\}$

সমাধান সেটটি নিচে অঙ্কিত সংখ্যারেখায় দেখানো হলো। 3 অপেক্ষা বড় সকল বাস্তব সংখ্যা প্রদত্ত অসমতার সমাধান এবং সমাধান সেট, $S = \{x \in R : x > 3\}$

উদাহরণ ২। সমাধান কর এবং সমাধান সেট সংখ্যারেখায় দেখাও : x-9>3x+1

সমাধান : দেওয়া আছে, x-9 > 3x+1

$$\therefore x-9+9 > 3x+1+9$$

বা,
$$x > 3x + 10$$

$$4x - 3x > 3x + 10 - 3x$$

$$\overline{1}$$
, − 2x > 10

$$\boxed{1}, \ \frac{-2x}{-2} < \frac{10}{-2}$$

[উভয়পক্ষকে ঋণাত্মক সংখ্যা –2 দ্বারা ভাগ করায়

বা, x<-5

অসমতার দিক পাল্টে গেছে]

∴ নির্ণেয় সমাধান x < -5</p>

এখানে সমাধান সেট $S = \{x \in R : x < -5\}$, অর্থাৎ -5 অপেক্ষা ছোট সকল বাস্তব সংখ্যা প্রদত্ত অসমতার সমাধান।

বি:দ্র: সমীকরণের সমাধান যেমন একটি সমীকরণ (সমতা) দ্বারা প্রকাশ পায়, তেমনি অসমতার সমাধান একটি অসমতা দ্বারা প্রকাশ পায়। অসমতার সমাধান সেট (সাধারণত) বাস্তব সংখ্যার অসীম উপসেট।

 $a \ge b$ এর অর্থ, a > b অথবা a = b

অর্থাৎ শুধু a < b হলেই $a \ge b$ মিথ্যা হয়।

অতএব, 4>3 এবং 4 = 4 দুইটি উক্তিই সত্য।

উদাহরণ ৩। সমাধান কর $a(x+b) < c, [a \neq 0]$

সমাধান : a ধনাত্মক হলে, $\frac{a(x+b)}{a} < \frac{c}{a}$, উভয়পক্ষকে a দ্বারা ভাগ করে পাই,

$$x+b<\frac{c}{a}$$
 $\forall x<\frac{c}{a}-b$

a ঋণাত্মক হলে একই প্রক্রিয়ায় পাই, $\frac{a(x+b)}{a} > \frac{c}{a}$

বা,
$$x + b > \frac{c}{a}$$
 বা, $x > \frac{c}{a} - b$

 \therefore নির্ণেয় সমাধান : $(i)x < \frac{c}{a} - b$, যদি a > 0 হয়,

$$(ii)x > \frac{c}{a} - b$$
, यिन $a < 0$ হয়।

বি:দ্র: a যদি শূন্য এবং c যদি ধনাত্মক হয়, তবে x এর যেকোনো মানের জন্য অসমতাটি সত্য হবে। কিন্তু a যদি শূন্য এবং c ঋণাত্মক হয়, তবে অসমতাটির কেনো সমাধান থাকবে না।

প্রশ্নমালা ৬-১

অসমতাগুলো সমাধান কর এবং সংখ্যারেয়খায় সমাধান সেট দেখাও:

$$3 + y - 3 < 5$$
 $3 + 3(x - 2) < 6$ $9 + 3x - 2 > 2x - 1$ $8 + z \le \frac{1}{2}z + 3$
 $4 + 8 \ge 2 - 2x$ $4 + x \le \frac{x}{3} + 4$ $4 + 5(3 - 2t) \le 3(4 - 3t)$ $4 + \frac{x}{3} + \frac{x}{4} + \frac{x}{5} > \frac{47}{60}$

অসমতার ব্যবহার

সমীকরণের সাহায্যে তোমরা সমস্যা সমাধান করতে শিখেছ। একই পদ্ধতিতে অসমতা সম্পর্কিত সমস্যার সমাধান করতে পারবে।

উদাহরণ ১। কোনো পরীক্ষায় বাংলা ১ম ও ২য় পত্রে রমা পেয়েছে যথাক্রমে 5x এবং 6x নম্বর এবং কুমকুম পেয়েছে 4x এবং 84 নম্বর। কোনো পত্রে কেউ 40 এর নিচে পায়নি। বাংলা বিষয়ে কুমকুম হয়েছে প্রথম এবং রমা হয়েছে দ্বিতীয়। x এর মান সম্ভাব্য অসমতার মাধ্যমে প্রকাশ কর।

সমাধান : রমা পেয়েছে মোট 5x + 6x নম্বর এবং কুমকুম পেয়েছে 4x + 84 মোট নম্বর।

প্রামতে, 5x + 6x < 4x + 84

বা, 5x + 6x < 4x + 84 বা, 7x < 84

বা,
$$x < \frac{84}{7}$$
 বা, $x < 12$

কিন্তু, $4x \ge 40$ [প্রাপ্ত সর্বনিম্ন নম্বর 40] বা, $x \ge 10$

∴ অসমতার মাধ্যমে লিখা যায় $10 \le x \le 12$

উদাহরণ ২। একজন ছাত্র 5 টাকা দরে x টি পেঙ্গিল এবং 8 টাকা দরে (x+4)টি খাতা কিনেছে। মোট মূল্য অনুধর্ব 97 টাকা হলে, সর্বাধিক কয়টি পেঙ্গিল কিনেছে?

সমাধান : xটি পেন্সিলের দাম 5x টাকা এবং (x+4)টি খাতার দাম 8(x+4) টাকা।

প্রামতে,
$$5x+8(x+4) \le 97$$
 বা, $5x+8(x+4) \le 97$

ৰা,
$$x \le \frac{65}{13}$$
 ৰা, $x \le 5$

∴ ছাত্রটি সর্বাধিক 5টি পেঙ্গিল কিনেছে।

কাজ: 140 টাকা কেজি দরে ডেভিড x কেজি আপেল কিনলেন। তিনি বিক্রেতাকে 1000 টাকার একখানা নোট দিলেন। বিক্রেতা 50 টাকার x খানা নোটসহ বাকী টাকা ফেরত দিলেন। সমস্যাটিকে অসমতার মাধ্যমে প্রকাশ কর এবং x এর সম্ভাব্য মান নির্ণয় কর।

প্রশ্নমালা ৬ ২

১-৫ পর্যন্ত সমস্যাগুলো অসমতার মাধ্যমে প্রকাশ কর এবং x এর মান সম্ভাব্য মান নির্ণয় কর।

- ১। এক বালক ঘণ্টায় x কি. মি. বেগে 3 ঘণ্টা হাঁটল এবং ঘণ্টায় (x+2) কি. মি. বেগে $\frac{1}{2}$ ঘণ্টা দৌড়াল এবং তার অতিক্রান্ত পথ 29 কি. মি. এর কম।
- ২। একটি বোর্ডিং-এ রোজ 4x কেজি চাল এবং $\left(x-3\right)$ কেজি ডাল লাগে এবং চাল ও ডাল মিলে 40 কেজির বেশি লাগে না।

- ৩। 70 টাকা কেজি দরে সোহরাব সাহেব x কেজি আম কিনলেন। বিক্রেতাকে 500 টাকার একখানা নোট দিলেন। বিক্রেতা 20 টাকার x খানা নোটসহ বাকি টাকা ফেরত দিলেন।
- ৪। একটি গাড়ি 4 ঘণ্টায় যায় x कি. মি. এবং 5 ঘণ্টায় যায় (x + 120) কি. মি.। গাড়িটির গড় গতিবেগ
 ঘণ্টায় 100 কি. মি. এর বেশি নয়।
- ৫। এক টুকরা কাগজের ক্ষেত্রফল 40 বর্গ সে. মি.। তা থেকে x সে. মি. দীর্ঘ এবং 5 সে. মি. প্রস্থবিশিষ্ট আয়তাকার কাগজ কেটে নেওয়া হলো।
- ৬। পুত্রের বয়স মায়ের বয়সের এক-তৃতীয়াংশ। পিতা মায়ের চেয়ে 6 বছরের বড়। তিনজনের বয়সের সমষ্টি অনুর্ধ্ব 90 বছর। পিতার বয়স অসমতার মাধ্যমে প্রকাশ কর।
- ৭। জেনি 14 বছর বয়সে জুনিয়র বৃত্তি পরীক্ষা দিয়েছিল। 17 বছর বয়সে সে এস.এস.সি পরীক্ষা দিবে। তার বর্তমান বয়স অসমতায় প্রকাশ কর।
- ৮। একখানি জেট প্লেনের গতি প্রতি সেকেন্ডে সর্বাধিক 300 মিটার। প্লেনটি 15 কি. মি. যাওয়ার প্রয়োজনীয় সময় অসমতায় প্রকাশ কর।
- ৯। ঢাকা থেকে জেদ্দার বিমান পথে দূরত্ব 5000 কি.মি। জেট বিমানের সর্বোচ্চ গতিবেগ ঘণ্টায় 900 কি. মি.। কিন্তু ঢাকা থেকে জেদ্দা যাবার পথে প্রতিকূল দিকে ঘণ্টায় 100 কি. মি. বেগে বায়ু প্রবাহের সম্মুখীন হতে হয়। ঢাকা থেকে জেদ্দার বিরতিহীন উভ্ডয়নের প্রয়োজনীয় সময় একটি অসমতার মাধ্যমে প্রকাশ কর।
- ১০। পূর্ববর্তী প্রশ্নের সূত্র ধরে, জেদ্ধা থেকে ঢাকা ফেরার পথে উড্ডয়নের প্রয়োজনীয় সময় একটি অসমতার মাধ্যমে প্রকাশ কর।
- ১১। কোনো ধনাতাক পূর্ণ সংখ্যার 5 গুণ, সংখ্যাটির দ্বিগুণ এবং 15 এর সমষ্টি অপেক্ষা ছোট। সংখ্যাটির সম্ভাব্য মান অসমতায় প্রকাশ কর।

দুই চলকবিশিষ্ট সরল একঘাত অসমতা

আমরা দুই চলকবিশিষ্ট y = mx + c (যার সাধারণ আকার ax + by + c = 0) আকারে সরল সমীকরণের লেখচিত্র অঙ্কন করতে শিখেছি (সপ্তম শ্রেণীর বীজগণিত পুস্তক দ্রুষ্টব্য)। আমরা দেখেছি যে, এ রকম প্রত্যেক লেখচিত্রই একটি সরল রেখা।

স্থানাদ্ধায়িত x,y সমতলে ax+by+c=0 সমীকরণের লেখচিত্রের যেকোনো বিন্দুর স্থানাদ্ধ সমীকরণিটকে সিদ্ধ করে অর্থাৎ সমীকরণিটর বামপক্ষে x ও y এর পরিবর্তে যথাক্রমে ঐ বিন্দুর ভুজ ও কোটি বসালে এর মান শূন্য হয়। অন্যদিকে, লেখচিত্রের বাইরে কোনো বিন্দুর স্থানাদ্ধই সমীকরণিটকে সিদ্ধ করে না অর্থাৎ ঐ বিন্দুর ভুজ কোটির জন্য ax+by+c এর মান শূন্য অপেক্ষা বড় বা ছোট হয়। সমতলস্থ কোনো বিন্দু P এর ভুজ ও কোটি দ্বারা ax+by+c রাশির x ও y কে যথাক্রমে প্রতিস্থাপন করলে রাশিটির যে মান হয়, তাকে P বিন্দুতে রাশিটির মান বলা হয় এবং উক্ত মানকে সাধারণত f(P) দ্বারা নির্দেশ করা হয়। P বিন্দু লেখস্থিত হলে f(P)=0, P বিন্দু লেখচিত্রের বহিঃস্থ হলে f(P)>0 অথবা f(P)<0

বাস্তবে লেখচিত্রের বহিঃস্থ সকল বিন্দু লেখ দ্বারা দুইটি অর্ধতলে বিভক্ত হয় $\mathfrak s$ একটি অর্ধতলের প্রত্যেক বিন্দু P এর জন্য f(P)>0; অপর অর্ধতলের প্রত্যেক বিন্দু P এর জন্য f(P)<0.

বলা বাহুল্য, লেখের উপর অবস্থিত প্রত্যেক বিন্দু P এর জন্য f(P)=0

উদাহরণ ১ । x+y-3=0 সমীকরণটি বিবেচনা করি । সমীকরণটি থেকে পাওয়া যায় ঃ

		y = 3 - x		
X	0	3	1	
v	3	0	2	

এবং (x,y) সমতলে ছক কাগজে ছোট বর্গক্ষেত্রের বাহুর দৈর্ঘ্যকে একক ধরে সমীকরণটির লেখচিত্রটি নিম্নরূপ হয়:

এই লেখচিত্র রেখা সমগ্র তলটিকে তিনটি অংশে পৃথক করে। যথা:

- (১) রেখার (ক) চিহ্নিত পাশের বিন্দুসমূহ
- (২) রেখার (খ) চিহ্নিত পাশের বিন্দুসমূহ (৩) রেখাস্থিত বিন্দুসমূহ।

এখানে (ক) চিহ্নিত অংশকে লেখ রেখার "উপরের অংশ" ও (খ) চিহ্নিত অংশকে লেখ- রেখার "নিচের অংশ" বলা যায়।

দুই চলকবিশিষ্ট অসমতার লেখচিত্র

উদাহরণ ২। x+y-3>0 অথবা x+y-3<0 অসমতার লেখচিত্র অংকন কর।

সমাধান : উপরোক্ত অসমতাদ্বয়ের লেখচিত্র অংকন করতে প্রথমেই ছক কাগজে x+y-3=0 সমীকরণটির লেখচিত্র অংকন করি।

x+y-3=0 সমীকরণ থেকে পাই

X	0	3	1
у	3	0	2
	(t).	্য (1.2) (3.0) Y' চিত্র	X

x+y-3>0 অসমতার লেখচিত্র অঙ্কনের জন্য উক্ত অসমতায় মূলবিন্দু (0,0) এর মান বসালে আমরা পাই -3>0 যা সত্য নয়। কাজেই, অসমতার ছায়াচিত্র হবে x+y-3=0 রেখার যে পাশে মূলবিন্দু রয়েছে তার বিপরীত পাশে।

x+y-3<0 অসমতার লেখচিত্র অংকনের জন্য উক্ত অসমতায় মূলবিন্দু (0,0) এর মান বসালে পাওয়া যায় -3<0 যা অসমতাকে সিদ্ধ করে বা মান সত্য। কাজেই, এ অবস্থায় অসমতার ছায়াচিত্র হবে রেখাটির যে পাশে মূলবিন্দু রয়েছে সে পাশে।

উদাহরণ ৩। $2x-3y+6 \ge 0$ অসমতার সমাধান সেটের বর্ণনা দাও ও চিত্রিত কর। সমাধান : আমরা প্রথমে 2x-3y+6=0 সমীকরণের লেখচিত্র অঙ্কন করি। সমীকরণটি থেকে পাওয়া যায় :

$$2x - 3y + 6 \quad \boxed{4} \quad y = \frac{2x}{3} + 2$$

এ লেখচিত্রস্থিত কয়েকটি স্থানাঙ্ক :

X	0	-3	3
у	2	0	4

স্থানাঙ্কায়িত ছক কাগজের ক্ষুদ্রতম বর্গের বাহুর দৈর্ঘকে একক ধরে (0,2),(-3,0),(3,4) বিন্দুগুলো স্থাপন করে সমীকরণটির লেখচিত্র অঙ্কন করি।

এখন মূলবিন্দু $(0,\ 0)$ তে 2x-3y+6 রাশির মান $6,\$ যা ধনাত্মক। সুতরাং লেখচিত্র রেখাটির যে পার্শে মূলবিন্দু রয়েছে সেই পাশের সকল বিন্দুর জন্যই 2x-3y+6>0

অতএব, 2x-3y+6>0 অসমতার সমাধান সেট 2x-3y+6>0 সমীকরণের লেখচিত্রস্থিত সকল বিন্দুর এবং লেখচিত্রের যে পাশে মূলবিন্দু অবস্থিত সেই পাশের সকল বিন্দুর স্থানাঙ্ক সমন্বয়ে গঠিত। এই সমাধান সেটের লেখচিত্র উপরের চিত্রের চিহ্নিত অংশটুকু যার মধ্যে লেখচিত্র রেখাটিও অন্তর্ভুক্ত।

উদাহরণ 8 । x, y সমতলে, -2x < 5 অসমতার লেখচিত্র অঙ্কন কর।

সমাধান : -2x < 5 অসমতাটিকে এভাবে লেখা যায়।

$$2x + 5 > 0$$
 $\forall x > -5$ $\forall x > -\frac{5}{2}$

এখন স্থানাঙ্কায়িত x,y সমতলে $x=-rac{5}{2}$ সমীকরণের লেখচিত্র অঙ্কন করি। ছক কাগজের ক্ষুদ্রতম বর্গের বাহুর

দৈর্ঘ্যের দ্বিগুণকে একক ধরে $\left(-\frac{5}{2},0\right)$ বিন্দু দিয়ে y অক্ষের সমান্তরাল করে লেখচিত্র রেখাটি অঙ্কন করা হলো।

এই লেখচিত্র রেখার ডান পাশে মূলবিন্দু অবস্থিত এবং মূলবিন্দুতে x=0 যা, $>-rac{5}{2}$

সুতরাং লেখচিত্র রেখার ডান পাশের সকল বিন্দুর স্থানাঙ্কই প্রদত্ত অসমতার সমাধান (লেখচিত্র রেখার বিন্দুগুলো বিবেচ্য নয়)। সমাধান সেটের লেখচিত্র উপরের চিত্রের চিহ্নিত অংশটুকু (যার মধ্যে লেখচিত্র রেখাটি অন্তর্ভুক্ত নয়)। **উদাহরণ ৫**। $y \le 2x$ অসমতার লেখচিত্র অঙ্কন কর।

সমাধান : $y \le 2x$ অসমতাটিকে $y-2x \le 0$ আকারে লেখা যায়।

এখন
$$y-2x=0$$
 অথাৎ $y=2x$

সমীকরণের লেখচিত্র অঙ্কন করি। সমীকরণটি থেকে পাই,

X	0	2	-2
у	0	4	-4

স্থানাঙ্কায়িত ছক কাগজের ক্ষুদ্রতম বর্গের দৈর্ঘকে একক ধরে (0,0), (2,4), (-2,-4) বিন্দুগুলোকে স্থাপন করে লেখচিত্র রেখাটি অঙ্কন করা হলো।

(1,0) বিন্দু লেখচিত্র রেখার 'নিচের অংশে' আছে। এই বিন্দুতে $y-2x=0-2\times 1=-2<0$ সুতরাং লেখচিত্র রেখাটি ও তার নিচের অংশ [অর্থাৎ যে অংশে (1,0) বিন্দুটি অবস্থিত] সমন্বয়ে গঠিত সমতলের

অংশটুকুই প্রদত্ত অসমতার লেখচিত্র। উদাহরণ ৬। $2x-3y-1 \ge 0$ এবং $2x+3y-7 \le 0$ অসমতা দুইটির যুগপৎ সমাধান চিহ্নিত কর।

সমাধান : প্রথমে
$$2x - 3y - 1 = 0$$
 (i)

এবং
$$2x + 3y - 7 = 0$$
 (ii)

সমীকরণ দুইটির লেখচিত্র অঙ্কন করি।

(i) থেকে পাই,

$$3y = 2x - 1$$
 বা, $y = \frac{2x - 1}{3}$

এখানে.

X	5	-4	-1
у	3	-3	-1

$$(ii)$$
 থেকে পাই, $3y = -2x + 7$ বা, $y = \frac{-2x + 7}{3}$

এখানে,

X	-1	2	-4
у	3	1	5

এখন স্থানাঙ্কায়িত ছক কাগজের ক্ষুদ্রতম বর্গের বাহুর দৈর্ঘ্যকে একক ধরে (5,3), (-4,-3), (-1,-1) বিন্দুগুলো স্থাপন করে 2x-3y-1=0 সমীকরণের লেখচিত্র রেখা এবং (-1,3), (2,1), (-4,5) বিন্দুগুলো স্থাপন করে 2x+3y-7=0 সমীকরণের লেখচিত্র রেখা অঙ্কন করি।

মূলবিন্দু (0,0) তে 2x-3y-1 রাশির মান -1, যা ঋণাত্মক। সুতরাং 2x-3y-1=0 এর লেখচিত্র রেখার যে পাশে মূলবিন্দু অবস্থিত সেই পাশের সকল বিন্দুর জন্য 2x-3y-1<0 এবং অপর পাশের সকল বিন্দুর জন্য 2x-3y-1>0; অতএব লেখচিত্র রেখাটিসহ তার 'নিচে' সতলের চিহ্নিত অংশ 2x-3y-1>0 অসমতার লেখচিত্র। আবার, (0,0) তে $\left(2x-3y-7\right)$ রাশির মান -7, যা ঋণাত্মক। সুতরাং 2x+3y-7=0 এর লেখচিত্র রেখার যে পাশে মূলবিন্দু অবস্থিত সেই পাশের সকল বিন্দুর জন্য 2x+3y-7<0, অতএব লেখচিত্র রেখাটিসহ তার 'নিচে' সমতলের চিহ্নিত অংশ $2x+3y-7\leq0$ অসমতার লেখচিত্র। অতএব, এই রেখা দুইটির সংশিষ্ট অংশ সহ এই দুইভাবে চিহ্নিত অংশের ছেদাংশই অসমতা দুইটির যুগপৎ সমাধানের লেখচিত্র।

অনুশীলনী ৬.৩

১ । 5x + 5 > 25 অসমতাটির সমাধান সেট কোনটি?

$$\Phi$$
. S = {x \in R : x > 4}

$$\forall$$
. S = { x ∈ R : x < 4}

গ.
$$S = \{ x \in R : x \le 4 \}$$

$$\forall$$
. S = { x ∈ R : x ≥ 4}

২। x + y = -2 সমীকরণটিতে x এর কোণ মানের জন্য y = 0 হবে?

৩। 2xy + y = 3 সমীকরণটির সঠিক স্থানাংক কোনগুলো ?

$$\overline{\Phi}$$
. $(1, -1), (2, -1)$

নিম্নে অসমতাটি থেকে ৪ ও ৫ নম্বর প্রশ্নের উত্তর দাও:

$$x \le \frac{x}{4} + 3$$

৪। অসমতাটির সমাধান সেট কোনটি?

$$\Phi$$
. S = {x \in R : x > 4}

$$\forall$$
. S = {x∈R:x<4}

গ.
$$S = \{x \in R : x \le 4\}$$

$$\forall$$
. S = {x ∈ R : x ≥ 4}

৫। অসমতাটির সমাধান সেটের সংখ্যা রেখা কোনটি?

নিম্নের অনুচেছদটি পড়ে ৬ ও ৭ নম্বর প্রশ্নগুলোর উত্তর দাও:

একজন ছাত্রী 10.00 টাকা দরে x টি পেন্সিল 6.00 টাকা দরে (x+3)টি খাতা কিনেছে। সবগুলো মিলে মোট মূল্য অনুধৰ্ব 114.00 টাকা।

৬। সমস্যাটির অসমতায় প্রকাশ কোনটি ?

$$i \quad 10x + 6(x+3) \le 114$$

ii
$$10x + 6(x+3) \ge 114$$

iii
$$10x + 6(x+3) < 114$$

নিচের কোনটি সঠিক ?

৭। ছাত্রীটি সর্বাধিক কতটি পেঙ্গিল কিনল?

৮। সমস্যাটি সংখ্যা রেখায় কোনটি প্রযোজ্য হবে?

নিম্নের প্রত্যেক অসমতার সমাধান সেটের লেখচিত্র অঙ্কন কর: ৯ ৷

(i)
$$x - y > -10$$
 (ii) $2x - y < 6$

(ii)
$$2x - y < 6$$

(iii)
$$3x - y \ge 0$$

(iii)
$$3x - y \ge 0$$
 (iv) $3x - 2y \le 12$

(v)
$$y < -2$$
 (vi) $x \ge 4$

(vi)
$$x \ge 4$$

- (vii) y > x + 2 (viii) y < x + 2
- (ix) $y \ge 2x$ (x) x + 3y < 0
- ১০। নিচের প্রত্যেক অসমতাযুগলের সমাধান সেটের লেখচিত্র অঙ্কন কর:
 - (i) x 3y 6 < 0 এবং 3x + y + 2 < 0
 - (ii) $x + y 4 \le 0$ এবং $2x y 3 \ge 0$
 - (iii) x y + 3 > 0 এবং 2x y 6 ≥ 0
 - (iv) x + y 3 > 0 এবং 2x y 5 > 0
 - (v) x + 2y 4 > 0 এবং 2x y 3 > 0
 - (vi) 5x + 2y > 11 এবং 7x 2y > 3
 - (vii) 3x 3y > 5 এবং x + 3y ≤ 9
 - (viii) 5x 3y 9 > 0 এবং $3x 2y \ge 5$
- ১১। হযরত শাহজালাল বিমান বন্দর থেকে সিঙ্গাপুর বিমান পথের দূরত্ব 1793 কি.মি.। বাংলাদেশ বিমানের সর্বোচ্চ গতিবেগ 500 কি.মি./ঘণ্টা। কিন্তু হযরত শাহজালাল বিমান বন্দর থেকে সিঙ্গাপুর যাবার পথে প্রতিকুলে 60 কি.মি/ঘণ্টা বেগে বায় প্রবাহের সম্মুখীন হয়।
 - ক. উদ্দীপকের সমস্যাটির প্রয়োজনীয় সময় t ঘণ্টা ধরে সমস্যাটিকে অসমতায় দেখাও।
 - খ. হযরত শাহজালাল বিমানবন্দর থেকে সিঙ্গাপুর বিমানবন্দর পর্যন্ত বিরতিহীন উড্ডায়নের প্রয়োজনীয় সময় (ক) অসমতা সমীকরণ থেকে নির্ণয় কর এবং সংখ্যা রেখায় দেখাও।
 - গ. সিঙ্গাপুর থেকে হযরত শাহজালাল বিমানবন্দরে ফেরার পথে বিরতিহীন উড্ডায়নের প্রয়োজনীয় সময়কে x ধরে সমস্যাটিকে অসমতার মাধ্যমে প্রকাশ করে লেখের সাহায্যে সমাধান কর।
- ১২।দুইটি সংখ্যার ১ম সংখ্যাটির 3 গুণ থেকে ২য় সংখ্যাটির 5 গুণ বিয়োগ করলে 5 অপেক্ষা বৃহত্তর হয়। আবার ১ম সংখ্যা থেকে ২য় সংখ্যার 3 গুণ বিয়োগ করলে অনুর্ধ্ব 9 হয়।
 - ক. উদ্দীপকের সমস্যাগুলোকে অসমতায় দেখাও।
 - খ. ১ম সংখ্যাটির 5 গুণ, ইহার দ্বিগুণ এবং 15 এর সমষ্টি অপেক্ষা ছোট হলে সংখ্যাটির সম্ভাব্য মান অসমতায় প্রকাশ কর।
 - গ. ক নং এ প্রাপ্ত অসমতা যুগলের সমাধান সেটের লেখচিত্র অঙ্কন কর।

নবম অধ্যায়

সূচকীয় ও লগারিদমীয় ফাংশন

(Exponential & Logarithmic Functions)

সমসাময়িক বাস্তবতায় সূচক ও লগারিদমীয় ফাংশনের অনেক প্রয়োগ বিধায় এর চর্চা অব্যাহত রয়েছে। যেমন জনসংখ্যা বৃদ্ধি, চক্রবৃদ্ধি মুনাফা ইত্যাদিতে উভয় ফাংশনের প্রয়োগ বিদ্যমান।

অধ্যায় শেষে শিক্ষার্থীরা

- মূলদ সূচক ও অমূলদ সূচক ব্যাখ্যা করতে পারবে ।
- মূলদ ও অমূলদ সূচকের জন্য বিভিন্ন সূত্র প্রমাণ ও প্রয়োগ করতে পারবে ।
- সূচক ও লগারিমের পারস্পারিক সম্পর্ক ব্যাখ্যা করতে পারবে।
- লগারিদমের বিভিন্ন সূত্র প্রমাণ ও প্রয়োগ করতে পারবে।
- লগারিদমের ভিত্তি পরিবর্তন করতে পারবে।
- সূচকীয়, লগারিদমীয় ও পরমমান ফাংশনের ধারণা ব্যাখ্যা করতে পারবে এবং গাণিতিক সমস্যা সমাধান
 করতে পারবে।
- ফাংশনসমূহের লেখচিত্র অংকনে আগ্রহী হবে।
- সূচকীয়, লগারিদমীয় ও পরমমান ফাংশনসমূহকে লেখচিত্রের সাহায়্যে উপস্থাপন করতে পারবে।
- ক্যালকুলেটরের সাহায্যে লগ ও প্রতিলগ নির্ণয় করতে পারবে।
- ৯-১ মূলদ ও অমূলদ সূচক : মাধ্যমিক বীজগণিতে আলোচিত কিছু বিষয় যা এ অধ্যায়ের আলোচনার স্বার্থে উলেখ করা হলো :
 - R সকল বাস্তব সংখ্যার সেট
 - N সকল স্বাভাবিক সংখ্যার সেট
 - Z সকল পূর্ণ সংখ্যার সেট
 - সকল মূলদ সংখ্যার সেট নির্দেশ করে।

ধরি a একটি অখণ্ড সংখ্যা বা ভগ্নাংশ যা ধনাত্মক বা ঋণাত্মক হতে পারে এবং n একটি ধনাত্মক অখণ্ড সংখ্যা। তাহলে a কে n বার গুণ করলে গুণফলটিকে লিখা হয় $a^n=a\cdot a\cdot a \cdot a \cdot \dots (n$ বার) a এবং a^n কে বলা হয় a এর n ঘাত। এরূপ ক্ষেত্রে a কে বলা হয় নিধান বা ভিত্তি (base) এবং n কে বলা হয় a এর ঘাতের সূচক (exponent) অথবা a এর সূচক।

সুতরাং 3^4 এর ক্ষেত্রে ভিত্তি 3 এবং সূচক 4

আবার, $\left(\frac{2}{3}\right)^4$ এর ক্ষেত্রে ভিত্তি $\frac{2}{3}$ এর সূচক 4 ।

সংজ্ঞা: সকল $a \in R$ এর জন্য

(3)
$$a^1 = a$$

(২)
$$a^n=a\cdot a\cdot a......a$$
 (n সংখ্যক উৎপাদক), যেখানে, $n\in N, n>1$

অমূলদ সূচক :

অমূলদ সূচকের জন্য $a^x(a>0)$ এর মান এমনভাবে নির্দিষ্ট করা হয় যে, x এর মূলদ আসন্ন মান p এর জন্য a^p এর মান a^x এর মানের আসন্ন হয়। উদাহরণস্বরূপ, $3^{\sqrt{5}}$ সংখ্যাটি বিবেচনা করি। আমরা জানি, $\sqrt{5}$ একটি অমূলদ সংখ্যা এবং $\sqrt{5}=2\cdot 236067977...$ (এই মান ক্যালকুলেটর ব্যবহার করে পাওয়া গিয়েছে এবং দশমিক বিস্তার যে অনন্ত তা $\sqrt{5}$ দ্বারা নির্দেশ করা হয়েছে)। $\sqrt{5}$ এর আসন্ন মান হিসেবে

$$p_1 = 2 \cdot 23$$
 $p_2 = 2 \cdot 236$ $p_3 = 2 \cdot 2360$ $p_4 = 2 \cdot 236067$ $p_5 = 2 \cdot 2360679$ $p_6 = 2 \cdot 23606797$

বিবেচনা করে $3^{\sqrt{5}}$ এর আসন্ন মান হিসেবে

$$q_1 = 3^{2 \cdot 23} = 11 \cdot 5872505...$$
 $q_2 = 3^{2 \cdot 236} = 11 \cdot 6638822...$
 $q_3 = 3^{2 \cdot 2360} = 11 \cdot 6638822...$
 $q_4 = 3^{2 \cdot 236067} = 11 \cdot 6647407...$
 $q_5 = 3^{2 \cdot 2360679} = 11 \cdot 6647523...$
 $q_6 = 3^{2 \cdot 23606797} = 11 \cdot 6647532...$

পাওয়া যায় (এই মানগুলো ও ক্যালকুলেটর ব্যবহার করে পাওয়া গিয়েছে) বাস্তবিক পক্ষে, $3^{\sqrt{5}} = 11 \cdot 6647533...$

৯-২ সূচক সম্পর্কিত সূত্র:

সূত্র ১ : $a \in R$ এবং $n \in N$ হলে, $a^1 = a$, $a^{n+1} = a^n \cdot a$.

প্রমাণ : সংজ্ঞানুযায়ী $a^1=a$ এবং $n\in N$ এর জন্য $a^{n+1}=\overbrace{a\cdot a\cdot a......a\cdot a}^{n+1}\cdot a=a^n\cdot a$

দুষ্টব্য: N সকল স্বাভাবিক সংখ্যার সেট

সূত্র ২ : $n \in R$ এবং $m, n \in N$ হলে $a^m \cdot a^n = a^{m+n}$

প্রমাণ : যেকোনো $m \in N$ নির্দিষ্ট করে এবং n কে চলক ধরে খোলা বাক্য $a^m \cdot a^n = a^{m+n}$(1) বিবেচনা করি।

(1) এ n=1 বসিয়ে পাই, বামপক্ষ $a^m \cdot a^1 = a^m \cdot a = a^{m+1}$ ডানপক্ষ [সূত্র ১] ∴ n = 1 এর জন্য (1) সত্য।

এখন ধরি, n=k এর জন্য (1) সত্য। অর্থাৎ, $a^m \cdot a^k = a^{m+k} \dots$ (২)

তাহলে, $a^m \cdot a^{k+1} = a^m (a^k \cdot a)$ [সূত্র ১]

 $=(a^m \cdot a^k) \cdot a$ [গুণের সহযোজন]

 $= a^{m+k} \cdot a$ [আরোহ কল্পনা]

= a^{m+k+1} [সূত্ৰ ১]

অর্থাৎ, n=k+1, এর জন্য (1) সত্য।

সুতরাং গাণিতিক আরোহ পদ্ধতি অনুযায়ী সকল $n \in N$ এর জন্য (1) সত্য।

 \therefore যে কোনো $m,n\in N$ এর জন্য $a^m\cdot a^n=a^{m+n}$

$$\therefore a^m \cdot a^n = a^{m+n}$$

বর্ণিত সূত্রটিকে সূচকের মৌলিক সূত্র বলা হয়।

সূতা ৩।
$$a \in R$$
, $a \neq 0$ এবং $m,n \in N$ হলে $\frac{a^m}{a^n} = \begin{cases} a^{m-n} & \text{যখন } m > n \\ \frac{1}{a^{n-m}} & \text{যখন } m < n \end{cases}$

প্রমাণ : (১) মনে করি, m>n তাহলে $m-n\in N$

$$\therefore a^{m-n} \cdot a^n = a^{(m-n)+n} = a^m$$
 [সূত্ৰ ২]

$$\therefore \frac{a^m}{a^n} = a^{m-n} \quad [ভাগের সংজ্ঞা]$$

(২) মনে করি, m < n তাহলে $n - m \in N$

$$\therefore a^{n-m} \cdot a^m = a^{(n-m)+m} = a^n$$
 [সূত্ৰ ২]

$$\therefore \frac{a^m}{a^n} = \frac{1}{a^{n-m}}$$
 [ভাগের সংজ্ঞা]

দুষ্টব্য: সূত্রটি গাণিতিক আরোহ পদ্ধতিতে প্রমাণ কর [সূত্র ২ এর অনুরূপ]

সূত্র 8 :
$$a \in R$$
 এবং $m, n \in N$ হলে, $\left(a^m\right)^n = a^{mn}$

সূতা $\boldsymbol{c}: a,b \in R$ এবং $n \in N$ হলে, $(a \cdot b)^n = a^n \cdot b^n$

[সূত্রদ্বয় আরোহ পদ্ধতিতে প্রমাণ কর]

শূন্য ও ঋণাত্মক পূর্ণ সাংখ্যিক সূচক।

সংজ্ঞা : $a \in R$, $a \neq 0$ হলে,

(9)
$$a^0 = 1$$

(8)
$$a^{-n} = \frac{1}{a^n}$$
, যেখানে $n \in N$

মম্ব্যু: সূচকের ধারণা সম্প্রসারণের সময় লক্ষ্য রাখা হয়, যেন সূচকের মৌলিক সূত্র $a^m \cdot a^n = a^{m+n}$ সকল ক্ষেত্রেই বৈধ থাকে।

সূত্রটি যদি m=0 এর জন্য সত্য হয়, তবে $a^o\cdot a^n=a^{o+n}$ অর্থাৎ, $a^o=\frac{a^n}{a^n}=1$ হতে হবে। একইভাবে, সূত্রটি যদি $m=-n\ (n\in N)$ এর জন্য সত্য হতে হয়,

তবে $a^{-n}\cdot a^n=a^{-n+n}=a^o=1$ অর্থাৎ, $a^{-n}=rac{1}{a^n}$ হতে হবে। এদিকে লক্ষ্য রেখেই উপরের সংজ্ঞা বর্ণনা করা

হয়েছে।

উদাহরণ ১ ।
$$2^5 \cdot 2^6 = 2^{5+6} = 2^{11}$$

$$\frac{3^5}{3^3} = 3^{5-3} = 3^2$$

$$\frac{3^3}{3^5} = \frac{1}{3^{5-3}} = \frac{1}{3^2}$$

$$\left(\frac{5}{4}\right)^3 = \frac{5}{4} \times \frac{5}{4} \times \frac{5}{4} = \frac{5 \times 5 \times 5}{4 \times 4 \times 4} = \frac{5^3}{4^3}$$

$$\left(4^2\right)^7 = 4^{2 \times 7} = 4^{14}$$

$$\left(a^2b^3\right)^5 = \left(a^2\right)^5 \cdot \left(b^3\right)^5 = a^{2 \times 5} \cdot b^{3 \times 5} = a^{10}b^{15}$$

উদাহরণ ২।
$$6^{\circ} = 1, (-6)^{\circ} = 1, 7^{-1} = \frac{1}{7}.$$

$$7^{-2} = \frac{1}{7^{2}} = \frac{1}{49}, 10^{-1} = \frac{1}{10} = 0.1$$

$$10^{-2} = \frac{1}{10^{2}} = \frac{1}{100}$$

উদাহরণ ৩। $m,n\in N$ হলে $(a^m)^n=a^{mn}$ সূত্রটির সত্যতা স্বীকার করে নিয়ে দেখাও যে, $(a^m)^n=a^{mn}$ যেখানে $a\neq 0$ এবং $m\in N$ এবং $n\in Z$

সমাধান : (১) এখানে, $(a^m)^n = a^{mn}$(1)

যেখানে, $a \neq 0$ এবং $m \in N$ ও $n \in Z$

প্রথমে মনে করি, n>0 এক্ষেত্রে (1) এর সত্যতা স্বীকার করে নেওয়া হয়েছে।

- (২) এখন মনে করি, n=0 এ ক্ষেত্রে $(a^m)^n=(a^m)^o=a^o=1$
- ∴ (1) সত্য।
- (৩) সবশেষে মনে করি, n < 0 এবং n = -k, যেখানে $k \in N$

এক্ষেত্রে
$$(a^m)^n = (a^m)^{-k} = \frac{1}{(a^m)^k} = \frac{1}{a^{mk}} = a^{-mk} = a^{m(-k)} = a^{mn}.$$

উদাহরণ 8। দেখাও যে, সকল $m,n\in N$ এর জন্য $\dfrac{a^m}{a^n}=a^{m-n}$ যেখানে $a\neq 0$

সমাধান :
$$m > n$$
 হলে, $\frac{a^m}{a^n} = a^{m-n}$ [সূত্ৰ ৩]

$$m < n$$
 হলে, $\frac{a^m}{a^n} = \frac{1}{a^{n-m}}$ [সূত্ৰ ৩]

$$\therefore \frac{a^m}{a^n} = a^{-(n-m)} [সূত্ৰ 8]$$
$$= a^{m-n}$$

$$m = n$$
 হলে, $\frac{a^m}{a^n} = \frac{a^n}{a^n} = 1 = a^o$ [সংজ্ঞা ৩]
$$= a^{m-m} = a^{m-n}$$

দুষ্টব্য : উপরে বর্ণিত সূচকের সংজ্ঞাগুলো থেকে যেকোনো $m \in Z$ এর জন্য a^m এর ব্যাখ্যা পাওয়া যায়, যেখানে $a \neq 0$, সূচক ধনাতাক অথবা শূন্য অথবা ঋণাতাক ধরে সাধারণভাবে সকল পূর্ণ সাংখ্যিক সূচকের জন্য নিম্নোক্ত সূত্রটি প্রমাণ করা যায়।

সূত্র ৬ : $a \neq 0$, $b \neq 0$ এবং $m, n \in \mathbb{Z}$ হলে,

$$(\overline{\Phi}) \ a^m \cdot a^n = a^{m+n} \qquad (\overline{\Psi}) \ \frac{a^m}{a^n} = a^{m-n}$$

$$(\mathfrak{I}) (a^m)^n = a^{mn} (\mathfrak{I}) (ab)^n = a^n b^n$$

$$(\mathfrak{E}) \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}.$$

কাজ :

- ১। গাণিতিক আরোহ পদ্ধতিতে দেখাও যে, $(a^m)^n=a^{mn}$ যেখানে $a\in R$ এবং $n\in N$
- ২। গাণিতিক আরোহ পদ্ধতিতে দেখাও যে, $(a\cdot b)^n=a^nb^n$ যেখানে $a,b\in R$ এবং $n\in N$
- ৩। গাণিতিক আরোহ পদ্ধতিতে দেখাও যে, $\left(\dfrac{1}{a}\right)^n=\dfrac{1}{a^n}$, যেখানে a>0 এবং $n\in N$ ।

অতঃপর $(ab)^n=a^nb^n$ সূত্র ব্যবহার করে দেখাও যে, $\left(\frac{a}{b}\right)^n=\frac{a^n}{b^n}$ যেখানে, $a,b\in R$, b>0, এবং $n\in N$ ।

8। মনে কর, $a \neq 0$, এবং $m,n \in Z$ ধনাতাক পূর্ণ সাংখ্যিক সূচকের জন্য $a^m \cdot a^n = a^{m+n}$, সূত্রটির সত্যতা স্বীকার করে দেখাও যে, $a^m \cdot a^n = a^{m+n}$ যখন (i) m>0 এবং n<0, (ii) m<0 এবং n<0।

৯.৩ মূল এর ব্যাখ্যা

সংজ্ঞা : $n \in N, n > 1$ এবং $a \in R$ হলে, যদি এমন $x \in R$ থাকে যেন $x^n = a$ হয়, তবে সেই x কে a এর একটি n তম মূল বলা হয়। 2 তম মূলকে বর্গমূল এবং 3 তম মূলকে ঘনমূল বলা হয়।

উদাহরণ α । (i) 2 এবং -2 উভয়ই 16-এর 4 তম মূল, কারণ $(2)^4 = 16$ এবং $(-2)^4 = 16$

- (ii) 27 এর ঘনমূল 3, কারণ $(-3)^3 = -27$
- (ii) 0 এর n তম মূল 0, কারণ সকল $0^n = 0$
- (ii) 9 এর কোনো বর্গমূল নেই, কারণ যেকোনো বা স্তব সংখ্যার বর্গমূল অঋণাত্মক।

এখানে, উলেখ্য যে,

- (ক) যদি a>0 এবং $n\in N, n>1$ হয়, তবে a -এর একটি অনন্য ধনাত্মক n তম মূল আছে। এই ধনাত্মক মূলকে $\sqrt[n]{a}$ দ্বারা সূচিত করা হয় ($\sqrt[2]{a}$ এর স্থলে $\sqrt[n]{a}$ লেখা হয়) এবং একে a এর n তম মূল বলা হয়। n জোড় সংখ্যা হলে এরূপ a -এর অপর একটি n তম মূল আছে এবং তা হলো $\sqrt[n]{a}$ ।
- (খ) যদি a<0 এবং $n\in N, n>1$ বিজোড় সংখ্যা হয়, তবে a-এর একটি মাত্র n তম মূল আছে যা ঋণত্মক। এই মূলকে $\sqrt[n]{a}$ দ্বারা সূচিত করা হয়। n জোড় হলে এবং a ঋণাত্মক হলে a-এর কোন n তম মূল নেই। (গ) 0 এর n তম মূল্য $\sqrt[n]{0}=0$

দুষ্টব্য : (১) a>0 হলে $\sqrt[n]{a}>0$

(২) a < 0 এবং n বিজোড় হলে,

 $\sqrt[n]{a}=-\sqrt[n]{|a|}<0$ [যেখানে |a| হচ্ছে a এর পরমমান]।

উদাহরণ ৬। $\sqrt{4}=2$, $\sqrt{4}\neq -2$) $\sqrt[3]{-8}=-2=-\sqrt[3]{8}$, $\sqrt{a^2}=\left|a\right|=\begin{cases}a$, যখন a>0 -a, যখন a<0

সূত্র ৭ : a<0 এবং $n\in N, n>1, n$ বিজোড় হলে দেখাও যে, $\sqrt[n]{a}=-\sqrt[n]{a}$

প্রমাণ : মনে করি, $\sqrt[n]{|a|} = x$

তাহলে, $x^n = |a|$ [মূলের সংজ্ঞা]

বা, $x^n = -a$ [a এর সংজ্ঞা]

বা, $-x^n = a$

বা, $(-x)^n = a$ [: n বিজোড়]

∴ $\sqrt[n]{a} = -x$ [মূলের সংজা]

সূতরাং $\sqrt[n]{a} = -\sqrt[n]{|a|}$ কেননা a এর n তম মূল অনন্য।

উদাহরণ ৭। $-\sqrt[3]{27}$

সমাধান : $-\sqrt[3]{27} = -\sqrt[3]{(3)^3} = -3$

সূত্র ৮: $a>0, m\in Z$ এবং $n\in N, n>1$ হলে, $\left(\sqrt[n]{a}\right)^m=\sqrt[n]{a^m}$

প্রমাণ : মনে করি, $\sqrt[n]{a} = x$ এবং $\sqrt[n]{a^m} = y$

তাহলে, $x^n = a$ এবং $y^n = a^m$

 $y^n = a^m = (x^n)^m = (x^m)^n$

যেহেতু $y > 0, x^m > 0$, সুতরাং মূখ্য n তম

মূল বিবেচনা করে পাই, $y = x^m$

বা,
$$\sqrt[n]{a^m} = (\sqrt[n]{a})^m$$

অর্থাৎ,
$$\left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$$

সূত্র ৯ : যদি a>0 এবং $\frac{m}{n}=\frac{p}{q}$ হয়, যেখানে $m,\,p\in Z$ এবং $n,\,\,q\in N,\,\,n>1,\,\,q>1$

তবে,
$$\sqrt[n]{a^m} = \sqrt[q]{a^p}$$

প্ৰমাণ: এখানে qm = pn.

মনে করি, $\sqrt[n]{a^m} = x$ তহালে, $x^n = a^m$

$$\therefore (x^n)^q = (a^m)^q$$

$$\therefore x^{nq} = a^{mq} = a^{pn}$$

বা,
$$(x^q)^n = (a^p)^n$$

 $\therefore x^q = a^p$ [মূখ্য n তম মূল বিবেচনা করে]

$$\therefore x = \sqrt[q]{a^p}$$

$$\therefore \sqrt[n]{a^m} = \sqrt[q]{a^p}$$

অনুসিদ্ধাম্ভ যদি a>0 এবং $n,k\in N,\ n>1$ হয়,

তবে,
$$\sqrt[n]{a} = \sqrt[nk]{a^k}$$

৯-৪ মূলদ ভগ্নাংশ সূচক:

সংজ্ঞা : $a\in R$ এবং $n\in N,\ n>1$ হলে, (৫) $a^{\frac{1}{n}}=\sqrt[n]{a}$ যখন a>0 অথবা a<0 এবং বিজোড়।

মম্ভু $\mathbf{j}: \mathbf{y}$ চক নিয়ম $(a^m)^n = a^{mn}$ [সূত্র ৬ দুষ্টব্য]

যদি সকল ক্ষেত্রে সত্য হতে হয়, তবে $\left(a^{\frac{1}{n}}\right)^n=a^{\frac{n}{n}}=a^1=a$ হতে হবে, অর্থাৎ, $a^{\frac{1}{n}}$ এর n তম মূল হতে হবে।

এ জন্য একাধিক মূলের ক্ষেত্রে দ্ব্যর্থতা পরিহারের লক্ষ্যে উপরের সংজ্ঞা বর্ণনা করা হয়েছে।

মন্তব্য ২ : a < 0 এবং $n \in N, \ n > 1$ বিজোড় হলে সূত্র ৭ থেকে দেখা যায়

$$a^{\frac{1}{n}} = \sqrt[n]{a} = -\sqrt[n]{|a|} = -|a|^{\frac{1}{n}}$$

এরূপ ক্ষেত্রে এই সূত্রের সাহায্যেই a^n এর মান নির্ণয় করা হয়।

মম্ব্র ৩: a মূলদ সংখ্যা হলেও অধিকাংশ ক্ষেত্রে a^n অমূলদ সংখ্যা হয়। এরূপ ক্ষেত্রে a^n এর আসনু মান ব্যবহার করা হয়।

সংজ্ঞা : $a>0,\,m\in Z$ এবং $n\in N,\,\,n>1$ হলে, (৬) $a^{\frac{m}{n}}=a^{\left(\frac{1}{n}\right)^m}$

দুষ্টব্য $oldsymbol{>}$: সংজ্ঞা (৫) ও (৬) এবং সূত্র ৮ থেকে দেখা যায় যে, $a^{\frac{m}{n}} = \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$ যেখানে, a>0, $m\in Z$ এবং $n\in N, n>1$

সুতরাং $p\in Z$ এবং $q\in Z, n>1$ যদি এমন হয় যে, $\frac{m}{n}=\frac{p}{q}$ হয়, তবে সূত্র ৯ থেকে দেখা যায় যে,

$$a^{\frac{m}{n}} = a^{\frac{p}{q}}$$

দুষ্টব্য ২ : পূর্ণসাংখ্যিক সূচক মূলদ ভগ্নাংশ সূচকের সংজ্ঞা থেকে a^r এর ব্যাখ্যা পাওয়া যায়, যেখানে a>0 এবং $r\in Q$ । উপরের আলোচনা থেকে দেখা যায় যে, a>0 হলে, r কে বিভিন্ন সমতুল ভগ্নাংশ আকারে প্রকাশ করা হলেও a^r এর মানের কোনো তারতম্য হয় না ।

দুষ্টব্য ৩ : সূত্র ৬ এ বর্ণিত সূচক নিয়মগুলো সাধারণভাবে যেকোনো সূচকের জন্য সত্য হয়।

সূত্র ১০। a > 0, b > 0 এবং $r, s \in Q$ হলে

(ক)
$$a^r \cdot a^s = a^{r+s}$$
 (খ) $\frac{a^r}{a^s} = a^{r-s}$

(গ)
$$(a^r)^s = a^{rs}$$
 (ঘ) $(ab)^r = a^r b^r$

(8)
$$\left(\frac{a}{b}\right)^r = \frac{a^r}{b^r}$$

(ক) ও (ঘ) এর পুন:পুন প্রয়োগের মাধ্যমে দেখা যায় যে,

অনুসিদ্ধাম্ড় (১) a > 0 এবং $r_1, r_2, \dots, r_k \in Q$ হলে, $a^{r_1} \cdot a^{r_2} \cdot a^{r_3}, \dots, a^{r_k} = a^{r_1 + r_2 + r_3 + \dots, r_k}$

(২)
$$a_1 > 0, a_2 > 0, \ldots, a_n > 0$$
 এবং $r \in Q$ হলে, $(a_1 \cdot a_2, \ldots, a_n)^r = a_1^r \cdot a_2^r, \ldots, a_n^r$

উদাহরণ ৭। দেখাও যে, $a^{\frac{m}{n}}\cdot a^{\frac{p}{q}}=a^{\frac{m}{n}+\frac{p}{q}}$ যেখানে, $a>0; m,p\in Z; n,q\in N,n>1,q>1$.

সমাধান : $\frac{m}{n}$ ও $\frac{p}{q}$ কে সমহর বিশিষ্ট ভগ্নাংশে পরিণত করে দেখা যায় যে,

$$a^{\frac{m}{n}} \cdot a^{\frac{p}{q}} = a^{\frac{mq}{nq}} \cdot a^{\frac{np}{nq}} = \left(a^{\frac{1}{nq}}\right)^{mq} \left(a^{\frac{1}{nq}}\right)^{np}$$
 [সংজ্ঞা ৬ ব্যবহার করে]
$$= \left(a^{\frac{1}{nq}}\right)^{mq+np}$$
 [সূত্র ৬]
$$= a^{\frac{mq+np}{nq}}$$
 [সংজ্ঞা ৬]
$$= a^{\frac{mq}{nq}+\frac{np}{nq}}$$

$$= a^{\frac{m}{nq}+\frac{p}{nq}}$$

কয়েকটি প্রয়োজনীয় তথ্য:

- (i) যদি $a^x = 1$ হয়, যেখানে a > 0 এবং $a \ne 1$ তাহলে x = 0
- (ii) যদি $a^x = 1$ হয়, যেখানে a > 0 এবং $x \neq 0$ তাহলে a = 1
- (iii) যদি $a^x = a^y$ হয়, যেখানে a > 0 এবং $a \ne 1$ তাহলে x = y
- (iv) যদি $a^x=b^x$ হয়, যেখানে $\frac{a}{b}>0$ এবং এবং $x\neq 0$ তাহলে a=b

উদাহরণ ৮। সরল কর:

যদি $a^x = b, b^y = c$ এবং $c^z = a$ হয়, তবে দেখাও যে, xyz = 1.

সমধান : (i) প্রদত্ত শর্ত হতে, $b=a^x$, $c=b^y$ এবং $a=c^z$

এখন,
$$b = a^x = (c^z)^x = c^{zx} = (b^y)^{zx} = b^{xyz}$$

$$\Rightarrow b = b^{xyz} \Rightarrow b^1 = b^{xyz}$$

উদাহরণ ৯। যদি $a^b=b^a$ হয়, তবে দেখাও যে, $\left(\frac{a}{b}\right)^{\frac{a}{b}}=a^{\frac{a}{b}-1}$ এবং এ থেকে প্রমাণ কর যে, a=2b হলে, b=2

সমাধান : দেওয়া আছে $a^b = b^a$

$$\therefore b = (a^b)^{\frac{1}{a}} = a^{\frac{b}{a}}$$

বামপক্ষ =
$$\left(\frac{a}{b}\right)^{\frac{a}{b}} = \left(\frac{a}{a^{\frac{b}{a}}}\right)^{\frac{a}{b}} = \left(a^1 \cdot a^{-\frac{b}{a}}\right)^{\frac{a}{b}}$$

$$= a^{\frac{a}{b}} \cdot a^{-1} = a^{\frac{a}{b}-1}$$
 ডানপক্ষ প্ৰেমাণিত) ।

পুনরায়, a = 2b হলে

$$\left(\frac{2b}{b}\right)^{\frac{2b}{b}} = (2b)^{\frac{2b}{b}-1} \Rightarrow (2)^2 = (2b)^{2-1}$$

$$\Rightarrow 4 = 2b \qquad \therefore \quad b = 2 \text{ (প্রমাণিত)}$$

উদাহরণ ১০। যদি $x^{x\sqrt{x}}=\left(x\sqrt{x}\right)^x$ হয় তবে x এর মান নির্ণয় কর।

সমাধান : দেওয়া আছে $x^{x\sqrt{x}} = (x\sqrt{x})^x$

$$\Rightarrow (x^x)^{\sqrt{x}} = \left(x \cdot x^{\frac{1}{2}}\right)^x = \left(x^{1 + \frac{1}{2}}\right)^x$$
$$= \left(x^{\frac{3}{2}}\right)^x = \left(x^x\right)^{\frac{3}{2}}$$
$$\therefore (x^x)^{\sqrt{x}} = \left(x^x\right)^{\frac{3}{2}}$$

$$\Rightarrow \sqrt{x} = \frac{3}{2} \qquad \qquad \therefore \Rightarrow x = \left(\frac{3}{2}\right)^2 = \frac{9}{4}.$$

উদাহরণ ১১। যদি $a^x = b^y = c^z$ এবং $b^2 = ac$ হয়, তবে প্রমাণ কর যে, $\frac{1}{x} + \frac{1}{z} = \frac{2}{y}$

সমাধান : যেহেতু $a^x = b^y$

বা,
$$a = b^{\frac{y}{x}}$$

আবার,
$$c^z = b^y$$
 $\therefore c = b^{\frac{y}{z}}$

এখন $b^2 = ac$

$$\therefore b^2 = b^{\frac{y}{x}} \cdot b^{\frac{y}{z}} = b^{\frac{y}{x} + \frac{y}{z}}$$

$$\Rightarrow 2 = \frac{y}{x} + \frac{y}{z} \Rightarrow \frac{1}{x} + \frac{1}{z} = \frac{2}{y}$$
 (প্রামণিত)।

উদাহরণ ১২। প্রমাণ কর যে,
$$\left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a} \times \left(\frac{x^a}{x^b}\right)^{a+b} = 1$$

সমাধান : বামপক্ষ =
$$\left(\frac{x^b}{x^c}\right)^{b+c} \times \left(\frac{x^c}{x^a}\right)^{c+a} \times \left(\frac{x^a}{x^b}\right)^{a+b}$$

$$= (x^{b-c})^{b+c} \times (x^{c-a})^{c+a} \times (x^{a-b})^{a+b}$$

$$= x^{b^2-c^2} \times x^{c^2-a^2} \times x^{a^2-b^2}$$

$$= x^{b^2-c^2+c^2-a^2+a^2-b^2}$$

$$= x^0$$

$$= 1 = \forall A ? \forall A$$

উদাহরণ ১৩। যদি $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}$ এবং abc=1 হয়, তবে দেখাও যে, x+y+z=0

সমাধান : ধরি, $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}} = k$.

তাহলে পাই, $a = k^x, b = k^y, c = k^z$

$$\therefore abc = k^x k^y k^z = k^{x+y+z}$$

দেওয়া আছে, abc=1

$$\therefore k^{x+y+z} = k^0$$

$$\therefore x + y + z = 0$$

উদাহরণ ১৪। সরল কর :
$$\frac{1}{1+a^{y-z}+a^{y-x}}+\frac{1}{1+z^{z-x}+a^{z-y}}+\frac{1}{1+a^{x-y}+a^{x-z}}$$

এখানে,
$$\frac{1}{1+a^{y-z}+a^{y-x}} = \frac{a^{-y}}{a^{-y}(1+a^{y-z}+a^{y-x})} = \frac{a^{-y}}{a^{-y}+a^{-z}+a^{-x}}$$

একইভাবে,
$$\frac{1}{1+z^{z-x}+a^{z-y}}=\frac{a^{-z}}{a^{-z}(1+a^{z-x}+a^{z-y})}=\frac{a^{-z}}{a^{-z}+a^{-x}+a^{-y}}$$

এবং
$$\frac{1}{1+a^{x-y}+a^{x-z}} = \frac{a^{-x}}{a^{-x}+a^{-y}+a^{-z}}$$

সূতরাং প্রদত্ত রাশি
$$\frac{1}{1+a^{y-z}+a^{y-x}}+\frac{1}{1+z^{z-x}+a^{z-y}}+\frac{1}{1+a^{x-y}+a^{x-z}}$$

$$= \frac{a^{-y}}{a^{-y} + a^{-z} + a^{-x}} + \frac{a^{-z}}{a^{-z} + a^{-x} + a^{-y}} + \frac{a^{-x}}{a^{-x} + a^{-y} + a^{-z}}$$

$$= \frac{a^{-x} + a^{-y} + a^{-z}}{a^{-x} + a^{-y} + a^{-z}} = 1$$

উদাহরণ ১৫। যদি $a=2+2^{\frac{2}{3}}+2^{\frac{1}{3}}$ হয়, তবে দেখাও যে, $a^3-6a^2+6a-2=0$.

সমাধান : দেওয়া আছে, $a = 2 + 2^{\frac{2}{3}} + 2^{\frac{1}{3}}$

$$\therefore a-2=2^{\frac{2}{3}}+2^{\frac{1}{3}}$$

$$\overline{4}, \quad (a-2)^3 = \left(2^{\frac{2}{3}} + 2^{\frac{1}{3}}\right)^3$$

$$= 2^{2} + 2 + 3 \cdot 2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}} \left(2^{\frac{2}{3}} + 2^{\frac{1}{3}} \right)$$
$$= 6 + 6(a - 2) \left[2^{\frac{2}{3}} + 2^{\frac{1}{3}} = a - 2 \right]$$

$$\boxed{4}, \ a^3 - 3a^2 + 3a \cdot 2^2 - 2^3 = 6 + 6a - 12$$

$$\overline{a}$$
, $a^3 - 6a^2 + 12a - 8 = 6 + 6a - 12$

$$41, a^3 - 6a^2 + 6a - 2 = 0$$

উদাহরণ ১৬। সমাধান কর : $4^x - 3 \cdot 2^{x+2} \cdot + 2^5 = 0$

সমাধান:
$$4^{x} - 3 \cdot 2^{x+2} + 2^{5} = 0$$

 $\Rightarrow (2^{2})^{x} - 3 \cdot 2^{x} \cdot 2^{2} + 2^{5} = 0$
 $\Rightarrow (2^{x})^{2} - 12 \cdot 2^{x} + 32 = 0$
 $\Rightarrow y^{2} - 12y + 32 = 0$ [মনে করি $2^{x} = y$]
 $\Rightarrow y^{2} - 4y - 8y + 32 = 0$
 $\Rightarrow y(y - 4) - 8(y - 4) = 0$

$$\therefore y - 4 = 0 \qquad \text{or} \qquad y - 8 = 0$$

$$\Rightarrow 2^{x} - 4 = 0 \qquad [\because 2^{x} = y] \qquad \Rightarrow 2^{x} - 8 = 0 \qquad [\because 2^{x} = y]$$

$$\Rightarrow 2^{x} = 4 = 2^{2} \qquad \Rightarrow 2^{x} = 8 = 2^{3}$$

$$\therefore \quad x = 2 \qquad \qquad \therefore \quad x = 3$$

∴ নির্ণেয় সমাধান x = 2,3

 $\Rightarrow (y-4)(y-8)=0$

কাজ :

১। মান নির্ণয় কর:

(i)
$$\frac{5^{n+2} + 35 \times 5^{n-1}}{4 \times 5^n}$$
 (ii) $\frac{3^4 \cdot 3^8}{3^{14}}$

২। দেখাও যে,
$$\left(\frac{p^a}{p^b}\right)^{a^2+ab+b^2} imes \left(\frac{p^b}{p^c}\right)^{b^2+bc+c^2} imes \left(\frac{p^c}{p^a}\right)^{c^2+ca+a^2} = 1$$

৩। যদি
$$a=xy^{p-1},b=xy^{q-1}$$
 এবং $c=xy^{r-1}$ হয়, তবে দেখাও যে, $a^{q-r}b^{r-p}c^{p-q}=1$

8। সমাধান কর : (i)
$$4^x - 3^{x-\frac{1}{2}} = 3^{x+\frac{1}{2}} - 2^{2x-1}$$
.

(ii)
$$9^{2x} = 3^{x+1}$$

(iii)
$$2^{x+3} + 2^{x+1} = 320$$

৫। সরল কর:
$$(i)$$
 $\sqrt[12]{(a^8)}$ $\sqrt{(a^6)}$ $\sqrt{a^4}$.

(ii)
$$\left[1-1\left\{1-(1-x^3)^{-1}\right\}^{-1}\right]^{-1}$$
.

 $(ii) \left[1-1\left\{1-(1-x^3)^{-1}\right\}^{-1}\right]^{-1}.$ ৬। যদি $\sqrt[x]{a}=\sqrt[y]{b}=\sqrt[x]{c}$ এবং abc=1 হয়, তবে প্রমাণ কর x+y+z=0. ৭। যদি $a^m\cdot a^n=(a^m)^n$ হয়, তবে প্রমাণ কর যে, m(n-2)+n(m-2)=0.

অনুশীলনী ৯.১

১। প্রমাণ কর যে,
$$\left(a^{\frac{m}{n}}\right)^p=a^{\frac{mp}{n}}$$
 যেখানে m , $p\in Z$ এবং $n\in N$.

২। প্রমাণ কর যে,
$$\left(a^{\frac{1}{m}}\right)^{\frac{1}{n}}=a^{\frac{1}{mn}}$$
 যেখানে $m,n\in Z$

৩। প্রমাণ কর যে,
$$(ab)^{\frac{m}{n}}=a^{\frac{m}{n}}b^{\frac{m}{n}}$$
, যেখানে $m\in Z$, $n\in N$

8। দেখাও যে, (ক)
$$\left(a^{\frac{1}{3}}-b^{\frac{1}{3}}\right)\left(a^{\frac{2}{3}}+a^{\frac{1}{3}}b^{\frac{1}{3}}+b^{\frac{2}{3}}\right)=a-b$$

$$(4) \frac{a^3 + a^{-3} + 1}{a^{\frac{3}{2}} + a^{\frac{-3}{2}} + 1} = \left(a^{\frac{3}{2}} + a^{\frac{-3}{2}} - 1\right)$$

& I সরল কর :

$$(\Phi) \left\{ \left(x^{\frac{1}{a}}\right)^{\frac{a^2-b^2}{a-b}} \right\}^{\frac{a}{a+b}} \qquad (A) \frac{a^{\frac{3}{2}}+ab}{ab-b^3} - \frac{\sqrt{a}}{\sqrt{a}-b}$$

$$(\mathfrak{I}) \frac{\left(\frac{a+b}{b}\right)^{\frac{a}{a-b}} \times \left(\frac{a-b}{a}\right)^{\frac{a}{a-b}}}{\left(\frac{a+b}{b}\right)^{\frac{b}{a-b}} \times \left(\frac{a-b}{a}\right)^{\frac{b}{a-b}}}$$

$$(\overline{4}) \quad \frac{1}{1+a^{-m}b^n+a^{-m}c^p} + \frac{1}{1+b^{-n}c^p+b^{-n}a^m} + \frac{1}{1+c^{-p}a^m+c^{-p}b^n}$$

(8)
$$\sqrt[bc]{\frac{x^{\frac{b}{c}}}{x^{\frac{c}{b}}}} \times ca \sqrt[bc]{\frac{x^{\frac{a}{a}}}{x^{\frac{a}{c}}}} \times ab \sqrt[bc]{\frac{x^{\frac{a}{b}}}{x^{\frac{b}{a}}}}$$
 (5) $\frac{(a^2 - b^2)^a (a - b^{-1})^{b-a}}{(b^2 - a^{-2})^b (b + a^{-1})^{a-b}}$

৬। দেখাও যে,

(ক) যদি
$$x = a^{q+r}b^p$$
, $y = ^{r+p}b^q$, $z = a^{p+q}b^r$ হয়, তবে $x^{q-r} \cdot y^{r-p} \cdot z^{p-q} = 1$.

(খ) যদি
$$a^p = b, b^q = c$$
 এবং $c^r = a$ হয়, তবে $pqr = 1$.

(গ) যদি
$$a^x = p, a^y = q$$
 এবং $a^2 = (p^y q^x)^z$ হয়, তবে $xyz = 1$.

৭। (ক) যদি
$$x\sqrt[3]{a} + y\sqrt[3]{b} + z\sqrt[3]{c} = 0$$
 এবং $a^2 = bc$ হয়, তবে দেখাও যে, $ax^3 + by^3 + cz^3 = 3axyz$

(খ) যদি
$$x = (a+b)^{\frac{1}{3}} + (a-b)^{\frac{1}{3}}$$
 এবং $a^2 - b^2 = c^3$ হয়, তবে দেখাও যে, $x^3 - 3cx - 2a = 0$

(গ) যদি
$$a = 2^{\frac{1}{3}} + 2^{-\frac{1}{3}}$$
 হয়, তবে দেখাও যে, $2a^3 - 6a = 5$

(ঘ) যদি
$$a^2 + 2 = 3^{\frac{1}{3}} + 3^{-\frac{2}{3}}$$
 এবং $a \ge 0$ হয়, তবে দেখাও যে, $a^3 + 9a = 8$

(ঙ) যদি
$$a^2=b^3$$
 হয়, তবে দেখাও যে, $\left(\frac{a}{b}\right)^{\frac{3}{2}}+\left(\frac{b}{a}\right)^{\frac{2}{3}}=a^{\frac{1}{2}}+b^{-\frac{1}{3}}$

(চ) যদি
$$b = 1 + 3^{\frac{2}{3}} + 3^{-\frac{1}{3}}$$
 হয়, তবে দেখাও যে, $b^3 - 3b^2 - 6b - 4 = 0$

(ছ) যদি
$$a+b+c=0$$
 হয়, তবে দেখাও যে,

$$\frac{1}{x^b + x^{-c} + 1} + \frac{1}{x^c + x^{-a} + 1} + \frac{1}{x^a + x^{-b} + 1} = 1.$$

৮। (ক) যদি
$$a^x = b, b^y = c$$
 এবং $c^z = 1$ হয়, তবে $xyz = \pi$ ত ?

(খ) যদি
$$x^a = y^b = z^c$$
 এবং $xyz = 1$ হয়, তবে $ab + bc + ca =$ কত ?

(গ) যদি
$$9^x = (27)^y$$
 হয়, তা হলে $\frac{x}{y}$ এর মান কত ?

১। সমাধান কর:

$$(\overline{\Phi}) \ 3^{2x+2} + 27^{x+1} = 36$$

(
3
) $5^{x} + 3^{y} = 8$

$$5^{x-1} + 3^{y-1} = 2$$

(গ)
$$4^{3y-2} = 16^{x+y}$$

$$3^{x+2y} = 9^{2x+1}$$

(
$$\P$$
) $2^{2x+1} \cdot 2^{3y+1} = 8$

$$2^{x+2} \cdot 2^{y+2} = 16$$

৯.৬ লগারিদম (Logarithm)

Logos এবং arithmas নামক দুটি গ্রীক শব্দ হতে লগারিম শব্দটির উৎপত্তি। Logos অর্থ আলোচনা এবং arithmas অর্থ সংখ্যা অর্থাৎ, বিশেষ সংখ্যা নিয়ে আলোচনা।

সংজ্ঞা : যদি $a^x=b$ হয়, যেখানে a>0 এবং $a\neq 1$, তবে x কে বলা হয় b এর a ভিত্তিক লগারিদম, অর্থাৎ, $x=\log_a b$

অতএব, $a^x = b \Rightarrow x = \log_a b$

বিপরীতক্রমে, যদি $x = \log_a b \Rightarrow a^x = b$ হবে।

এক্ষেত্রে b সংখ্যাটিকে ভিত্তি a এর সাপেক্ষে x এর প্রতিলগ $(anti-\log arithm)$ বলে এবং আমরা লিখি $b=anti\log_a x$

যদি $\log a = n$ হয়, তবে a কে n এর প্রতিলগ বলা হয় অর্থাৎ, $\log a = n$ হলে $a = anti \log n$.

দুষ্টব্য : বৈজ্ঞানিক ক্যালকুলেটর ব্যবহার করে $\log a$ এর আসনু মান নির্ণয় করা যায় (এ সম্পর্কে মাধ্যমিক বীজগণিতে বিস্তারিত বর্ণনা দেওয়া আছে)।

সংজ্ঞানুসারে, আমরা পাই,

$$\log_2 64 = 6$$
 যেহেতু $2^6 = 64$ এবং $\log_8 64 = 2$ যেহেতু $8^2 = 64$

সুতরাং, একই সংখ্যার লগারিদম ভিন্ন ভিন্ন ভিত্তির প্রেক্ষিতে ভিন্ন হতে পারে। ধনাত্মক কিন্তু এককের সমান নয় এমন যেকোনো সংখ্যাকে ভিত্তি ধরে একই সংখ্যার ভিন্ন ভিন্ন লগারিদম নির্ণয় করা যায়। যেকোনো ধনাত্মক সংখ্যাকে লগারিদমের ভিত্তি হিসাবে গণ্য করা হয়। কোনো ঋণাত্মক সংখ্যার লগারিদম নির্ণয় করা যায় না।

Note: a>0 ও a>1 এবং $b\neq 0$ হলে b এর অনন্য a ভিত্তিক লগারিদমকে $\log_a b$ দ্বারা সূচিত করা হয়। সুতরাং (ক) $\log_a b=x$ যদি ও কেবল যদি $a^x=b$ হয়। (ক) থেকে দেখা যায় যে,

(
$$\mathfrak{A}$$
) $\log_a(a^x) = x$ (\mathfrak{A}) $a^{\log_a b} = b$

উদাহরণ ১। (১) $4^2 = 16 \Rightarrow \log_4 16 = 2$

$$(3) \ 5^{-2} = \frac{1}{5^2} = \frac{1}{25} \Rightarrow \log_5\left(\frac{1}{25}\right) = -2$$

(
$$\circ$$
) $10^3 = 1000 \Rightarrow \log_{10}(1000) = 3$

(8)
$$7^{\log_7 9} \ [: a^{\log_a b} = b]$$

(a)
$$18 = \log_2 2^{18}$$
 [: $\log_a a^x = x$]

৯-৭ লগারিদমের সূত্রাবলী : (মাধ্যমিক বীজগণিতে প্রমাণ দেওয়া হয়েছে বিধায় এখানে শুধু সূত্রগুলো দেখানো হলো।)

১.
$$\log_a a = 1$$
 এবং $\log_a 1 = 0$

$$\geq$$
. $\log_a(M \times N) = \log_a M + \log_a N$

$$\circ. \log_a \left(\frac{M}{N}\right) = \log_a M - \log_a N$$

8.
$$\log_a(M)^N = N \log_a M$$

$$\alpha$$
. $\log_a M = \log_b M \times \log_a b$

উদাহরণ ২ । $\log_2 5 + \log_2 7 + \log_2 3 = \log_2 (5.7.3) = \log_2 105$

উদাহরণ ৩ ।
$$\log_3 20 - \log_3 5 = \log_3 \frac{20}{5} = \log_3 4$$

উদাহরণ 8 । $\log_5 64 = \log_5 2^6 = 6\log_5 2$

$$Note$$
: (i) যদি $x>0$, $y>0$ এবং $a\neq 1$ তখন $x=y$ যদি এবং কেবল যদি $\log_a x = \log_a y$

(ii) যদি
$$a > 1$$
 এবং $x > 1$ হয় তবে $\log_a x > 0$

(iii) যদি
$$0 < a < 1$$
 এবং $0 < x < 1$ হয়, তবে $\log_a x > 0$

$$(iv)$$
 যদি $a > 1$ এবং $0 < x < 1$ হয়, তবে $\log_a x < 0$

উদাহরণ ৫। x এর মান নির্ণয় কর যখন

(i)
$$\log_{\sqrt{8}} x = 3\frac{1}{3}$$

(ii)
$$\sqrt[3]{16} \log_{10}[98 + \sqrt{x^2 - 12x + 36}] = 2$$

সমাধান: (i) যেহেতু
$$\log_{\sqrt{8}} x = 3\frac{1}{3} = \frac{10}{3}$$

$$\Rightarrow x = (\sqrt{8})^{\frac{10}{3}} = (\sqrt{2^3})^{\frac{10}{3}}$$

$$\Rightarrow x = \left(2^{\frac{3}{2}}\right)^{\frac{10}{3}} = 2^{\frac{3}{2} \cdot \frac{10}{3}} = 2^5 = 32$$

$$\therefore x = 32$$

(ii) থেছেছ
$$\log_{10}[98 + \sqrt{x^2 - 12x + 36}] = 2$$

$$\Rightarrow$$
 98 + $\sqrt{x^2 - 12x + 36} = 10^2 = 100$

$$\Rightarrow \sqrt{x^2 - 12x + 36} = 2$$

$$\Rightarrow x^2 - 12x + 36 = 4$$

$$\Rightarrow (x-4)(x-8) = 0$$

$$\therefore x = 4$$
 $\forall x = 8$.

উদাহরণ ৬। দেখাও যে, $a^{\log_k b - \log_k c} \times b^{\log_k c - \log_k a} \times c^{\log_k a - \log_k b} = 1$.

সমাধান : ধরি, $P = a^{\log_k b - \log_k c} \times b^{\log_k c - \log_k a} \times c^{\log_k a - \log_k b}$

তাহলৈ, $\log_k p = (\log_k b - \log_k c) \log_k a + (\log_k c - \log_k a) \log_k b + (\log_k a - \log_k b) \log_k c$.

$$\Rightarrow \log_k p = 0$$
 [সরল করে]

$$\Rightarrow P = k^0 = 1$$

উদাহরণ ৭। দেখাও যে, $x^{\log}{}_a y = y^{\log}{}_a x$

প্রমাণ: ধরি $p = \log_a y, q = \log_a x$

সুতরাং $a^p = y$, $a^q = x$

$$\therefore (a^p)^q = y^q \Rightarrow y^q = a^{pq}$$

এবং
$$(a^q)^p = x^p \Rightarrow x^p = a^{pq}$$

$$\therefore x^p = y^q \Rightarrow x \log_a y = y lob_a x$$

উদাহরণ ৮। দেখাও যে, $\log_a p imes \log_p q imes \log_q r imes \log_r b = \log_a b$

বামপক্ষ =
$$\log_a p \times \log_p q \times \log_q r \times \log_r b$$

$$= (\log_p q \times \log_a p) \times (\log_r b \times \log_q r)$$

$$= \log_a q \times \log_q b = \log_a b =$$
ভানপক্ষ।

উদাহরণ ৯। দেখাও যে, $\frac{1}{\log_a(abc)} + \frac{1}{\log_b(abc)} + \frac{1}{\log_c(abc)} = 1$

সমাধান : ধরি, $\log_a(abc) = x, \log_b(abc) = y, \log_c(abc) = z$

সুতরাং, $a^x = abc, b^y = abc, c^z = abc$

$$\therefore a = (abc)^{\frac{1}{x}}, b = (abc)^{\frac{1}{y}}, c = (abc)^{\frac{1}{z}}$$

এখন, $(abc)^1 = abc = (abc)^{\frac{1}{x}} (abc)^{\frac{1}{y}} (abc)^{\frac{1}{z}}$

$$=(abc)^{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}$$

$$\therefore \quad \frac{1}{x} + \frac{1}{v} + \frac{1}{z} = 1$$

অর্থাৎ,
$$\frac{1}{\log_a(abc)} + \frac{1}{\log_b(abc)} + \frac{1}{\log_c(abc)} = 1$$

উদাহরণ ১০। যদি $P = \log_a(bc), q = \log_b(ca), r = \log_c(ab)$ হয়

তবে দেখাও যে,
$$\frac{1}{p+1} + \frac{1}{q+1} + \frac{1}{r+1} = 1$$
.

সমাধান: $1 + P = 1 + \log_a(bc) = \log_a a + \log_a(bc) = \log_a(abc)$

একইভাবে, $1+q = \log_b(abc)$, $1+r = \log_c(abc)$

উদাহরণ (৯) এ আমরা প্রমাণ করেছি, $\frac{1}{\log_a(abc)} + \frac{1}{\log_b(abc)} + \frac{1}{\log_c(abc)} = 1$

$$\therefore \frac{1}{p+1} + \frac{1}{q+1} + \frac{1}{r+1} = 1.$$

উদাহরণ ১১। যদি $\frac{\log a}{y-z}=\frac{\log b}{z-x}=\frac{\log c}{x-y}$ হয়, তবে দেখাও যে, $a^xb^yc^z=1$

সমাধান : ধরি,
$$\frac{\log a}{y-z} = \frac{\log b}{z-x} = \frac{\log c}{x-y} = k$$

তাহলে, $\log a = k(y-z)$, $\log b = k(z-x)$, $\log c = k(x-y)$

$$\therefore x \log a + y \log b + z \log c = k(xy - zx + yz - xy + zx - yz) = 0$$

বা,
$$\log_a x + \log_a y + \log_a z = 0$$

বা,
$$\log(a^x b^y c^z) = 0$$

$$\text{di, } \log(a^x b^y c^z) = \log 1 \quad [\log 1 = 0]$$

$$\therefore a^x b^y c^z = 1$$

কাজ :

১। যদি
$$\frac{\log a}{b-c}=\frac{\log b}{c-a}=\frac{\log c}{a-b}$$
 তাহলে $a^a.b^b.c^c$ এর মান নির্ণয় কর।

২। যদি
$$a,b,c$$
 পরপর তিনটি ধনাতাক অখণ্ড সংখ্যা হয়, তবে প্রমাণ কর যে, $\log(1+ac)=2\log b$

৩। যদি
$$a^2 + b^2 = 7ab$$
 হয়, তবে দেখাও যে, $\log\left(\frac{a+b}{3}\right) = \frac{1}{2}\log(ab) = \frac{1}{2}(\log a + \log b)$

8। যদি
$$\log\left(\frac{x+y}{3}\right) = \frac{1}{2}(\log x + \log y)$$
 তবে দেখাও যে, $\frac{x}{y} + \frac{y}{x} = 7$

৫। যদি
$$x=1+\log_a bc$$
, $y=1+\log_b ca$ এবং $z=1+\log_c ab$ হয়, তবে প্রমাণ কর যে, $xyz=xy+yz+zx$

- ৬। (ক) যদি $2\log_8 A = p$, $2\log_2 2A = q$ এবং q-p=4 হয়, তবে A এর মান নির্ণয় কর।
 - (খ) যদি $\log x^y = 6$ এবং $\log 14x^{8y} = 3$ হয়, তবে x এর মান নির্ণয় কর।
- ৭। লগ সারণি (মাধ্যমিক বীজগণিত পুস্তক দ্রষ্টব্য) ব্যবহার করে P এর আসনু মান নির্ণয় কর যেখানে,
 - $(\overline{\Phi}) P = (0.087721)^4$

(
$$\forall$$
) $P = \sqrt[3]{30.00618}$

৯-৭ সূচকীয়, লগারিদমীয় ও পরমমান ফাংশন

প্রথম অধ্যায়ে আমরা ফাংশন সম্পর্কে বিস্তারিত জেনেছি। এখানে সূচক, লগারিদম ও পরমমান ফাংশন সম্পর্কে আলোচনা করা হলো:

3

নিচের তিনটি টেবিলে বর্ণিত (x, y) ক্রমজোড়ের মানগুলো লক্ষ্য করি :

টেবিল ১ এ বর্ণিত x এর ভিনু ভিনু মানের জন্য y এর মানগুলোর অন্তর সমান যা সরলরেখার ফাংশন বর্ণিত হয়েছে।

টেবিল ২ এ বর্ণিত (x,y) ক্রমজোড়ের মানগুলো দ্বিঘাত ফাংশন বর্ণিত হয়েছে।

টেবিল ৩ এ বর্ণিত (x,y) ক্রমোজোড়ের মানগুলো $y=2^x$ দ্বারা বর্ণনা করা যায়। এখানে 2 একটি নির্দিষ্ট ধনাত্মক বাস্তব সংখ্যা এবং x এর ভিন্ন ভিন্ন মানের জন্য y এর বর্ণিত মানগুলো পাওয়া যায় যা নিম্নলিখিতভাবে সংজ্ঞায়িত করা যায়।

সূচক ফাংশন $f(x)=a^x$ সকল বাস্তব সংখ্যা x এর জন্য সংজ্ঞায়িত, যেখানে a>0 এবং $a\neq 1$ যেমন $y=2^x,10^x,e^x$ ইত্যাদি সূচক ফাংশন।

কাজ :

নিচের ছকে বর্ণিত সূচক ফাংশন লেখ:

۱ د	х	-2	-1	0	1	2	२।	х	-1	0	1	2	3
	у	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4		У	-3	0	3	6	9

<u>ه</u> ا	х	1	2	3	4	5	8	х	-3	-2	-1	0	1
	y	4	16	64	256	1024		y	0	1	2	3	4

Œ 1	х	-2	-1	0	1	2	ঙ।	х	1	2	3	4	5
	y	$\frac{1}{25}$	$\frac{1}{5}$	1	5	25		У	5	10	15	20	25

নিচের কোনটি সূচক ফাংশন নির্দেশ করে:

$$9 \mid y = -3^x \qquad \forall \mid y = 3x$$

$$\delta + y = -2x - 3$$
 $\delta \circ + y = 5 - x$

$$30 \mid y = 5 - x$$

$$33 + y = x^2 + 1$$
 $33 + y = 3x^2$

$$32 + y = 3x^2$$

$f(x) = 2^x$ এর লেখচিত্র অঙ্কন:

প্রদত্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা প্রস্তুত করি।

х	-3	-2	-1	0	1	2
y	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4

ছক কাগজে মানগুলো স্থাপন করলে নিমুরূপ লেখচিত্র পাওয়া যায়-

এখানে ডোমেন =
$$(-\infty, \infty)$$

চিত্র থেকে লক্ষ করলে দেখা যায়, যখন x=0 তখন $y=2^0=1$ কাজেই রেখাটি (0,1) বিন্দুগামী আবার, x এর ঋণাতাক যেকোনো মানের জন্য y এর মান কোনো সময় 0 (শুন্যের) খুবই কাছাকাছি পৌছায় কিন্তু শূন্যে (0) হয় না অর্থাৎ, $x \longrightarrow -\infty, \ y \longrightarrow 0^+$

একইভাবে, x এর যেকোনো ধনাতাক মানের জন্য y এর মান ক্রমান্বয়ে ডানদিকে (উপরের) বৃদ্ধি পেতে থাকবে অর্থাৎ, $-\infty$ দিকে ধাবিত হয়। অর্থাৎ, $x \longrightarrow -\infty$, $y \longrightarrow \infty$

সুতরাং ডোমেন $(D) = (-\infty, \infty)$

এবং রেঞ্জ (R) = (0,∞)

কাজ : লেখচিত্র অঙ্কন কর যেখানে $-3 \le x \le 3$

$$y = 2^{-x}$$
 $y = 4^x$ $y = 4^x$

$$\mathbf{v} \mid y = 2^{\frac{x}{2}}$$

$$8 + y = \left(\frac{3}{2}\right)^x$$

যেহেতু সূচক ফাংশন একটি এক-এক ফাংশন।

সুতরাং, এর বিপরীত ফাংশন আছে।

$$f(x) = y = a^x$$
 সূচকীয় রূপ

$$f^{-1}(y) = x = a^y$$
 x এবং y পরিবর্তন করে

অর্থাৎ, x হলো y এর a ভিত্তিক লগারিদম।

সংজ্ঞা: লগারিদমিক ফাংশন $f(x) = \log_a x$ দ্বারা সংজ্ঞায়িত যেখানে a > 0 এবং $a \neq 1$

 $f(x) = \log_3 x$, Inx, $\log_{10} x$ ইত্যাদি লগারিদমিক ফাংশন।

 $y = \log_2 x$ লেখচিত্র অঙ্কন :

যেহেতু $y = \log_2 x$ হলো $y = 2^x$ এর বিপরীত।

y=x রেখা সাপেক্ষে সূচক ফাংশনের প্রতিফলন লগারিদমিক ফাংশন নির্ণয় করা হয়েছে যাহা y=x রেখার সাপেক্ষে সদৃশ। এখন ডোমেন $R = (0, \infty)$

রেঞ্জ $(D) = (-\infty, \infty)$

কাজ: লেখচিত্র অঙ্কন কর এবং এদের বিপরীত ফাংশন নির্ণয়।

$$3 \mid y = 3x + 2 \qquad \forall \mid y = x^2 + 3$$

$$3 + y = x^2 + 3$$

$$9 + y = x^3 - 1$$

$$9 + y = x^3 - 1$$
 $8 + y = \frac{4}{x}$

$$\alpha + y = 3x$$

$$\alpha + y = 3x$$
 $9 + y = \frac{2x+1}{x-1}$ $9 + y = 2^{-x}$

$$9 + y = 2^{-x}$$

$$b \mid y = 4^x$$

উদাহরণ ১। $f(x) = \frac{x}{|x|}$ ফাংশনটির ডোমেন ও রেঞ্জ নির্ণয় কর।

সমাধান : এখানে $f(0) = \frac{0}{|0|} = \frac{0}{0}$ যা অসংজ্ঞায়িত।

x = 0 বিন্দুতে প্রদত্ত ফাংশনটি বিদ্যমান নয়।

শূন্য ব্যতীত χ এর অন্য সকল বাস্তব মানের জন্য প্রদত্ত ফাংশনটি বিদ্যমান

∴ ফাংশনের ডোমেন $D_f = R - \{0\}$

আবার,
$$f(x) = \frac{x}{|x|} = \begin{cases} \frac{x}{x} & \text{ যখন } x > 0 \\ x & \frac{x}{-x} & \text{ যখন } x < 0 \end{cases}$$
$$= \begin{cases} 1 & \text{ যখন } x > 0 \\ -1 & \text{ যখন } x < 0 \end{cases}$$

∴ প্রদত্ত ফাংশনের রেঞ্জ R_f = {-1,1}

উদাহরণ ২। $y=f(x)=In\frac{a+x}{a-x}, a>0$ ফাংশনটির ডোমেন ও রেঞ্জ নির্ণয় কর।

সমাধান : যেহেতু লগারিদম শুধুমাত্র ধনাত্মক বাস্তব সংখ্যার জন্য সংজ্ঞায়িত হয়।

$$\therefore \frac{a+x}{a-x} > 0$$
 যদি (i) $a+x>0$ এবং $a-x>0$ হয় \longrightarrow অথবা (ii) $a+x<0$ এবং $a-x<0$ হয় \longrightarrow \longrightarrow \longrightarrow

$$: \operatorname{ভোমেন} = \{x : -a < x\} \cap \{x : x > a\}$$

$$= (-a, \infty) \cap (-\infty, a) = (-a, a)$$

(ii)
$$\Rightarrow x < -a$$
 এবং $a < x$
 $\Rightarrow x < -a$ এবং $x > a$

$$\therefore$$
 ডোমেন $\{x: x < -a\} \cap \{x: x > a\} = \Phi$.

.: প্রদত্ত ফাংশনের ডোমেন

 \therefore $D_f=(i)$ ও (ii) ক্ষেত্রে প্রাপ্ত ডোমেনের সংযোগ $(-a,a)\cup\Phi=(-a,a)$

$$\Im : y = f(x) = In \frac{a+x}{a-x} \Rightarrow e^y = \frac{a+x}{a-x}$$

$$\Rightarrow a+x = ae^y - xe^y$$

$$\Rightarrow (1+ae^y)x = a(xe^y - 1)$$

$$\Rightarrow x = \frac{a(e^y - 1)}{e^y + 1}$$

v এর সকল বাস্তব মানের জন্য x এর মান বাস্তব হয়।

∴ প্রদত্ত ফাংশনের রেঞ্জ $R_f=R$

কাজ :

নিচের ফাংশনের ডোমেন ও রেঞ্জ নির্ণয় কর:

$$3 + y = \ln \frac{2+x}{2-x}$$

$$> y = \ln \frac{3+x}{3-x}$$

$$3 + y = \ln \frac{2+x}{2-x}$$
 $3 + y = \ln \frac{3+x}{3-x}$ $9 + y = \ln \frac{4+x}{4-x}$ $8 + y = \ln \frac{5+x}{5-x}$

$$8 + y = \ln \frac{5+x}{5-x}$$

পরমমান

মাধ্যমিক বীজগণিতে এ সম্পর্কিত বিস্তারিত বর্ণনা করা হয়েছে। এখানে শুধু পরমমানের সংজ্ঞা দেওয়া হলো :

যেকোনো বাস্তব সংখ্যা x এর মান শূন্য, ধনাত্মক বা ঋণাত্মক। কিন্তx এর পরমমান সবসময়ই শূন্য বা ধনাত্মক। x এর পরমমানকে |x| দ্বারা প্রকাশ করা হয় এবং পরমমান নিমুলিখিতভাবে সংজ্ঞায়িত করা হয়।

$$\mid x \mid = \begin{cases} x & \text{যখন } x > 0 \\ -x & \text{যখন } x < 0 \end{cases}$$

যেমন:
$$|0| = 0, |3| = 3, |-3| = -(-3) = 3$$

প্রমমান ফাংশন (Absosute Value Fuction)

যদি
$$x \in R$$
 হয়, তবে-

$$y = f(x) = \begin{vmatrix} x \end{vmatrix} = \begin{cases} x & \text{যখন } x \ge 0 \\ -x & \text{যখন } x < 0 \end{cases}$$

কে পরমমান ফাংশন বলা হয়।

 \therefore ডোমেন =R এবং রেঞ্জ $R_f=[0,\infty]$

উদাহরণ ৩। $f(x) = e^{\frac{|x|}{2}}$ যখন -1 < x < 0 এর ডোমেন ও রেঞ্জ নির্ণয় কর :

সমাধান:
$$f(x) = e^{\frac{-|x|}{2}}, -1 < x < 0$$

x এর মান যেহেতু নির্দিষ্ট -1 থেকে 0 এর মধ্যে

সুতরাং ডোমেন $D_f = (-1,0)$

আবার, -1 < x < 0 ব্যবধিতে $f(x) \in \left(e^{\frac{-1}{2}}, 1\right)$

সুতরাং রেঞ্জ
$$f = \left(e^{-\frac{1}{2}}, 1\right)$$

৯.৮ ফাংশনের লেখচিত্র

কোনো সমতলে কোনো ফাংশনকে জ্যামিতিকভাবে উপস্থাপন করা গেলে ঐ ফাংশনকে চেনা যায়। ফাংশনের জ্যামিতিকভাবে এই উপস্থাপনকে ফাংশনের লেখচিত্র অঙ্কন করা হয়েছে বলা হয়। এখানে সূচক, লগারিদমিক ও পরমমান ফাংশনের লেখচিত্রের অঙ্কন পদ্ধতি নিয়ে আলোচনা করা হলো।

- (1) $y = f(x) = a^x$ এর লেখচিত্র অঙ্কন কর:
- (i) যখন a>1 এবং x যেকোনো বাস্তব সংখ্যা তখন ফাংশন $f(x)=a^x$ সর্বদা ধনাতাক।

ধাপ ১ : x এর ধনাতাক মানের জন্য x এর মান বৃদ্ধির সাথে সাথে f(x) এর মান বৃদ্ধি পায়

ধাপ ২ : যখন x = 0 তখন $y = a^0 = 1$, সুতরাং, (0,1) রেখার উপর একটি বিন্দু। $X' = \frac{y = a^{y}}{4 - 3 - 2 - 1} = X$ Y'

চিত্ৰ: ১

ধাপ ৩ : x এর ঋণাতাক মানের জন্য x এর মান ক্রমাগত বৃদ্ধির সাথে সাথে f(x) এর মান ক্রমাগত হাস পাবে। অর্থাৎ, $x \to \infty$ হলে $y \to 0$ হবে।

এখন চিত্রে $y=a^x,a>1$ ফাংশনের চিত্র ১ এ দেখানো হলো :

এখানে
$$D_f = (-\infty, \infty)$$
 এবং $R_f = (\ 0\ , \infty)$

(ii) যখন o < a < 1, x এর মান বাস্তব তখন $y = f(x) = a^x$ সর্বদাই ধনাত্মক।

ধাপ m y : লক্ষ্য করি, মূল বিন্দুর ডানদিকে x এর মান ক্রমাগত বৃদ্ধি পেতে থাকলে অর্থাৎ, $x o \infty$ হলে y = 0 হবে।

ধাপ ২ : যখন x = 0 তখন $y = a^0 = 1$

সুতরাং (0,1) বিন্দু রেখার উপর পড়ে।

ধাপ ৩: যখন a < 1 এবং x এর ঋণাতাক মানের জন্য অর্থাৎ x এর মান মূল বিন্দুর বামদিকে ক্রমাগত বৃদ্ধির সাথে

সাথে y এর মান ক্রমাগত বৃদ্ধি পাবে অর্থাৎ $y \to \infty$.

[[ধরি
$$a=\frac{1}{2}<1, x=-2,-3,.....n,$$
 তখন $y=f(x)=a^x=\left(\frac{1}{2}\right)^{-2}$

$$=2^2, y=2^3, \dots, y^n=z^n$$
. যদি $n\to\infty$ তখন $y\to\infty$]

এখন $y = f(x) = a^x$, 0 < a < 1 এর লেখচিত্র চিত্র ২ দেখানো হলো :

এখানে $D_f=(-\infty,\infty)$ এবং $R_f=(0,\infty)$

কাজ :

নিচের ফাংশনগুলোর লেখচিত্র অঙ্কন কর এবং ডোমেন ও রেঞ্জ নির্ণয় কর:

$$(i) \quad f(x) = 2^x$$

(ii)
$$f(x) = \left(\frac{1}{2}\right)^x$$

(i)
$$f(x) = 2^x$$
 (ii) $f(x) = \left(\frac{1}{2}\right)^x$ (iii) $f(x) = e^x$, $2 < e < 3$.

(iv)
$$f(x) = e^{-x}$$
, $2 < e < 3$. (v) $f(x) = 3^x$

$$(v) \quad f(x) = 3^x$$

2.
$$f(x) = a^x$$
 এর লেখচিত্র অঙ্কন কর

(i) ধরি, $y = f(x) = \log_a x$ যখন 0 < a < 1 ফাংশনটিকে লেখা যায় $x = a^y$ ধাপ $oldsymbol{y}$: যখন y এর ধনাত্মক মান ক্রমাগত বৃদ্ধি পেতে থাকে অর্থাৎ, $y o \infty$ xহয় তখন x এর মান শূন্যের দিকে ধাবিত হয় অর্থাৎ, x
ightarrow 0

ধাপ ২ : যেহেতু
$$a^o=1$$
 কাজেই $y=\log_a 1=0,$ সুতরাং রেখাটি $(1,0)$ বিন্দুগামী।

ধাপ ৩ : y এর ঋণাতাক মান অর্থাৎ, y এর মান মূলবিন্দুর নিচের দিকে ক্রমাগত বৃদ্ধি পেতে থাকে অর্থাৎ, $y \to -\infty$ হয় তাহলে x এর মান ক্রমাগত বৃদ্ধি পেতে থাকে অর্থাৎ, $x \to \infty$

এখন চিত্র ৩ এ $y = \log_a x$, 0 < a < 1 দেখানো হলো :

এখানে
$$D_f=(0,\infty)$$
 এবং $R_f=(-\infty,\infty)$

যখন $y = \log_a x, a > 1$, তখন

ধাপ \mathbf{S} : যখন a>1, y এর সকল মানের জন্য x এর মান ধনাতাক এবং yএর মানের ক্রমাগত বৃদ্ধির সাথে সাথে x এর মান বৃদ্ধিপ্রাপ্ত হয়। অর্থাৎ, $y o \infty$ হলে $x o \infty$

ধাপ ২ : যেহেতু
$$a^o = 1$$
 কাজেই $y = \log_a 1 = 0$ সুতরাং, রেখাটি $(1,0)$ বিন্দুগামী।

ধাপ ৩ : y এর ঋণাতাক মানের জন্য y এর মান ক্রমাগত হ্রাস পেলে অর্থাৎ, $y=-\infty$ হলে x এর মান ক্রমাগত শূন্যের দিকে ধাবিত হয় অর্থাৎ, $x \to 0$

এখন $f(x) = \log a^x, a > 1$ এর লেখচিত্র চিত্র ৪ এ দেখানো হলো :

এখানে
$$D_f=(-\infty,\infty)$$
 এবং $R_f=(0,\infty)$

উদাহরণ ৩। $f(x) = \log_{10} x$ এর লেখচিত্র অঙ্কন কর।

সমাধান : ধরি $y = f(x) = \log_{10} x$

যেহেতু $10^o=1$ কাজেই $y=\log_{10}1=0$ সুতরাং, রেখাটি (1,0) বিন্দুগামী।

যখন $x \to 0$ তখন $y \to -\infty$ ।

 $\therefore y = \log_{10} x$ রেখাটি বৃদ্ধিপ্রাপ্ত। নিচে রেখাটির লেখচিত্র অঙ্কন করা হলো।

এখানে
$$D_f=(0,\infty)$$
 এবং $R_f=(-\infty,\infty)$

উদাহরণ 8 । f(x) = lnx এর লেখচিত্র অঙ্কন কর।

সমাধান : ধরি,
$$y = f(x) = lnx$$

যেহেতু $e^o=1$ কাজেই y=ln1=0. সুতরাং, রেখাটি (1,0) বিন্দুগামী।

যখন
$$x \to 0$$
 তখন $y = \ln 0 = -\infty$

$$\therefore$$
 $y = lnx$ রেখাটি বৃদ্ধিপ্রাপ্ত।

নিচে রেখাটির লেখচিত্র অঙ্কন করা হলো:

এখানে এখানে
$$D_f = (0, \infty)$$

$$R_f = (-\infty, \infty)$$

f(x) = lnx এর লেখচিত্র চিত্র ৬ এ দেখানো হলো :

কাজ :

১। টেবিলে উলেখিত x ও y এর মান নিয়ে $y = \log_{10} x$ এর লেখচিত্র অঙ্কন কর।

х	.5	1	2	3	4	5	10	12
у	3	0	0.3	0.5	.0	.7	1	1.0

২। $y = \log_e x$ এর লেখচিত্র অঙ্কনের জন্য ১এর ন্যায় $x \cdot g \cdot y$ এর মান নিয়ে টেবিল তৈরি কর এবং লেখচিত্র আঁক।

অনুশীলনী ৯.২

১।
$$\left\{ \left(\frac{1}{x^a}\right)^{\frac{a^2-b^2}{a+b}} \right\}^{\frac{a}{a-b}}$$
 এর সরলমান কোনটি ?

২। যদি a,b,p>0 এবং $a\neq 1,b\neq 1$ হয়, তবে

i.
$$\log_a P = \log_b P \times \log_a b$$

$$ii. \log_a \sqrt{a} \times \log_b \sqrt{b} \times \log_c \sqrt{c}$$
 এর মান 2

$$iii. \quad x^{\log_a y} = y^{\log_a x}$$

উপরের তথ্যের আলোকে নিচের কোনটি সঠিক ?

(ক) iও ii

(খ) ii ও iii (গ) i ও iii (ঘ) i,ii ও iii

৩-৫ নং প্রশ্নের উত্তর দাও যখন $x, y, z \neq 0$ এবং $a^x = b^y = c^z$

কোনটি সঠিক ? **9** I

(ক) $a = b^{\frac{y}{z}}$ (খ) $c^{\frac{z}{y}}$ (গ) $a = c^{\frac{z}{x}}$ (ঘ) $a \neq \frac{b^2}{z}$

নিচের কোনটি ac এর সমান। 8 |

(ক) $b^{x} \cdot b^{z}$ (খ) $b^{x} \cdot b^{y}$ (গ) $b^{x} \cdot y$ (ঘ) $b^{y} \cdot z$

৫। $b^2 = ac$ হলে নিচের কোনটি সঠিক ?

 $(\overline{\Phi}) \frac{1}{x} + \frac{1}{z} = \frac{2}{v} \quad (\overline{\forall}) \frac{1}{x} + \frac{1}{v} = \frac{2}{z} \qquad (\overline{\eta}) \frac{1}{v} + \frac{1}{z} = \frac{2}{x} \qquad (\overline{\eta}) \frac{1}{x} + \frac{1}{v} = \frac{z}{2}$

দেখাও যে. ৬।

 $(\overline{\Phi}) \log_k \left(\frac{a^n}{b^n}\right) + \log_k \left(\frac{b^n}{c^n}\right) + \log_k \left(\frac{c^n}{a^n}\right) = 0$

(\forall) $\log_k(ab)\log_k(\frac{a}{b}) + \log_k(bc)\log_k(\frac{b}{c}) + \log_k(ca)\log_k(\frac{c}{a}) = 0$

(গ) $\log_{\sqrt{a}} b \times \log_{\sqrt{b}} c \times \log_{\sqrt{c}} a = 8$

৭। (ক) যদি $\frac{\log_k a}{b-c} = \frac{\log_k b}{c-a} = \frac{\log_k c}{a-b}$ হয়, তবে দেখাও যে, $a^a b^b c^c = 1$

(খ) যদি $\frac{\log_k a}{v-z} = \frac{\log_k b}{z-x} = \frac{\log_k c}{x-v}$ হয়, তবে দেখাও যে,

(2) $a^{y+z}b^{z+x}c^{x+y} = 1$

(3) $a^{y^2 + yz + z^2} \cdot b^{z^2 + zx + x^2} \cdot c^{x^2 + xy + y^2} = 1$.

(গ) যদি $\frac{\log_k(1+x)}{\log_k x}=2$ হয়, তবে দেখাও যে, $x=\frac{1+\sqrt{5}}{2}$

(ঘ) দেখাও যে, $\log_k = \frac{x - \sqrt{x^2 - 1}}{x + \sqrt{x^2 - 1}} = 2\log_k \left(x - \sqrt{x^2 - 1}\right)$

(ঙ) যদি $a^{3-x}b^{5x} = a^{5+x}b^{3x}$ হয়, তবে দেখাও যে, $x\log_k\left(\frac{b}{a}\right) = \log_k a$

(চ) যদি $xv^{a-1} = P$, $xv^{b-1} = q$, $xv^{c-1} = r$ হয়.

তবে দেখাও যে, $(b-c)\log_k p + (c-a)\log_k q + (a-b)\log_k r = 0$

(ছ) যদি
$$\frac{ab\log_k(ab)}{a+b} = \frac{bc\log_k(bc)}{b+c} = \frac{ca\log_k(ca)}{c+a}$$
 হয়, তবে দেখাও যে, $a^a = b^b = c^c$

(জ) যদি
$$\frac{x(y+z-x)}{\log_k x} = \frac{y(z+x-y)}{\log_k y} = \frac{z(x+y-z)}{\log_k z}$$
 হয়,

তবে দেখাও যে, $x^y y^z = y^z z^y = z^x x^z$

৮। 'লগ সারণি (মাধ্যমিক বীজগণিত দুষ্টব্য) ব্যবহার করে P এর আসনু মান নির্ণয় কর যেখানে,

(ক)
$$P=2\pi\sqrt{\frac{l}{g}}$$
 যেখানে $\pi\approx 3\cdot 1416, g=981$ এবং $l=25\cdot 5$

(খ)
$$P = 10000 \times e^{005t}$$
 যেখানে $e = 1.718$ এবং $t = 13.86$

৯। $\ln P \approx 2 \cdot 3026 \times \log P$ সূত্র ব্যবহার করে $\ln P$ এর আসনু মান নির্ণয় কর, যখন-

(
$$\Phi$$
) $P = 10000$ (Ψ) $P = .001e^2$ (Ψ) $P = 10^{100} \times \sqrt{e}$

১০। লেখচিত্র অঙ্কন কর:

(
$$\Phi$$
) $y = 3^x$ (Ψ) $y = -3^x$ (Ψ) $y = 3^{x+1}$ (Ψ) $y = 3^{x+1}$ (Ψ) $y = 3^{x+1}$ (Ψ) $y = 3^{x+1}$

১১। নিচের ফাংশনের বিপরীত ফাংশন লিখ এবং লেখচিত্র অঙ্কন করে ডোমেন ও রেঞ্জ নির্ণয় কর।

$$(\overline{\Phi}) v = 1 - 2^{-x}$$

$$(\forall) y = \log_{10} x$$

$$(\mathfrak{I}) \quad y = x^2, \quad x > 0$$

১২।
$$f(x) = ln(x-2)$$
 ফাংশনটির D_f ও R_f নির্ণয় কর :

১৩।
$$f(x) = \ln \frac{1-x}{1+x}$$
 ফাংশনটির ডোমেন এবং রেঞ্জ নির্ণয় কর।

১৪। ডোমেন, রেঞ্জ উল্লেখসহ লেখচিত্র অঙ্কন কর।

(ক)
$$f(x) = |x|$$
 যখন $-5 \le x \le 5$

(খ)
$$f(x) = x + |x|$$
 যখন $-2 \le x \le 2$

(গ)
$$f(x) = \begin{cases} \frac{|x|}{x} & \text{যখন } x \neq 0 \\ 0 & \text{যখন } x = 0 \end{cases}$$

$$(\triangledown) f(x) = \frac{x}{|x|}$$

(8)
$$f(x) = \log \frac{5+x}{5-x}, -5 < x < 5$$

১৫। দেওয়া আছে:

$$2^{2x}$$
. $2^{y-1} = 64$(i)
এবং $6x$. $\frac{6^{y-2}}{3} = 72$ (ii)

- ক. (i) ও (ii) কে x ও y চলকবিশিষ্ট সরল সমীকরণে পরিণত কর।
- সমীকরণদ্বয় সমাধান করে শুদ্ধতা যাচাই কর।
- গ. x ও y মান যদি কোনো চতুর্জুজের সন্নিহিত বাহুর দৈর্ঘ্য হয় যেখানে বাহুদ্বয়ের অন্তর্ভুক্ত কোণ 90^0 তবে চতুর্ভুজটি আয়ত না বর্গ উল্লেখ কর এবং এর ক্ষেত্রফল ও কর্ণের দৈর্ঘ্য নির্ণয় কর ।

১৬। দেওয়া আছে,

$$\frac{\log(1+x)}{\log x} = 2$$

- ক. প্রদত্ত সমীকরণটিকে x চলকসংবলিত একটি দ্বিঘাত সমীকরণে পরিণত কর।
- খ. প্রাপ্ত সমীকরণটিকে সমাধান কর এবং দেখাও যে. x এর কেবল একটি বীজ সমীকরণটিকে সিদ্ধ করে।
- গ. প্রমাণ কর যে, মূলদ্বয়ের প্রতিটির বর্গ তার স্বীয় মান অপেক্ষা 1(এক) বেশি এবং তাদের লেখচিত্র পরস্পর সমান্তরাল।

১৭। দেওয়া আছে.

$$y=2^x$$

- প্রদত্ত ফাংশনটির ডোমেন এবং রেঞ্জ নির্ণয় কর।
- খ. ফাংশনটির লেখচিত্র অঙ্কন কর এবং এর বৈশিষ্ট্যগুলি লিখ।
- গ. ফাংশনটির বিপরীত ফাংশন নির্ণয় করে এটি এক-এক কিনা তা নির্ধারণ কর এবং বিপরীত ফাংশনটির লেখচিত্র আঁক।