भ্रण अभाए

সেট ও ফাংশন

(Set and Function)

 वियद्रबह आणनाठना करा रला :

अराग्र ल०ल निकरीटा

 याताई बहाठ भाइर大।

> बिभदीठ खाएन ब्यारता क्राड माइड।।

১.১ সেট

$$
M=\{a, c, e, h, i, m, s, t\}
$$

जाडा कट्रकी उमाएब :

कव: धनिब भब्टिड लर :

(ब) पनिल बनिखात लन०लाद लाे।
(1) गब्बबिङ সरख্যান लओ।

সার্বিক সেট

भाর্বিক সেট (Universal Set) आাোচনার্র জन्য निচেন সেট্ষলো বিরেচনা কর্রি
$P=\{x: x$ ষनाजक পृর্ளসংथ্যা এবং $5 x \leq 16\}$
$Q=\left\{x: x\right.$ «नाঅক পৃর্ণসং্যা এবং $\left.x^{2}<20\right\}$

এথन $U=\{x: x$ «नाजाक পৃর্ণসश्यात সেট $\}$ বিরেচনা কর্রি।
তাহলে P, Q এবং R হলো U এর্র টপসেট এবং U কে বना হয় সার্বিক লেট।
निर्मिষ সেট্কে आলোচনাধীन সক্न সেটেন্ন সার্বিক সেট বनা एয়।

উপসেট (Subset)

$P=\{1,2,3\}, Q=\{1,2,3,4\}$ बবং $R=\{1,2,3,4\}$

P সেট্টিকে R সেটেন ঔপসেট বना इয় এবং जেঘা হয় $P \subseteq R$.

সুতন্যাং Q কে R সেটেন্ন টপসেট বना হহ এবং नেथা হম $Q \subseteq R$.

P बক R এর প্রকৃভ টপসেট বना হয় এবং নেথা হয় $P \subset R$.
बেকোনো সেট A এর্ন অन्ग
(i) $A \subseteq A$
(i) $\Phi \subseteq A$ (苂का সেট Φ खयকোनো সেটেন্র উপসেট)

यमि A সেট, সभীম সেট B এর্র উभসেট হহ्र i.e. $A \subseteq B$ অঘन $n(A) \leq n(B)$
यमि A সেট, সभীম সেট B এর্त থকৃত টপসেট i.e. $A \subset B$ उথन $n(A)<n(B)$.

পৃর্রক সেট (Complement Set)

जদ্দেপ, $Q=\{1,2,3,4\}$ সেটেন্ন जन্য পৃর্রক সেট $Q^{\prime}=\{5,6,7, \ldots \ldots . .$.$\} .$
यमि U গার্বিক সেট হহ, তরে P সেটেন্গ পৃর্木ক সেট $P^{\prime}=\{x: x \notin P, x \in U\}$.

 প্রাশ कर।

बোनঢि সত্য বा মिथ্যা বन : i) $\left.\left.A^{\prime} \subseteq B, i i\right) B^{\prime} \subseteq A, i i i\right) A \not \subset B$
সমाधान : $U=\{1,2,3,4,5,6,7,8,9,10\}$
(a) $A=\{x: 2 x>7\}=\{4,5,6,7,8,9,10\}$
$\therefore A^{\prime}=\{1,2,3\}$
(b) $B=\{x: 3 x<20\}=\{1,2,3,4,5,6\}$

$$
\therefore B^{\prime}=\{7,8,9,10\}
$$

$\therefore A^{\prime} \subseteq B$ मध্য, $B^{\prime} \not \subset A$ मिथ्या जबश $A \not \subset B$ সज्य

শজি সেট (Power Set)

 ब্রকাশ कन्रा इश्र।
यেমन, $A=\{1.2 .3$.$\} হनে, A$ এর শखि সেট,

$$
P(A)=\{\Phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\} .
$$

 বিবেচিত அত্যেক সেট $P(U)$ এর সদস্য।
 সেটে 2^{n} সश्থ্যক উপাদাन थाকরে।

কाब :

১। नि ब्या आवए $U=\{1,2,3,4,5,6,7,8,9,10\}$
निচেন্ন সেটৈสো जनिका পদ্ধতিতে প্রকাশ बন্ন :
(a) $A=\{x: 5 x>37\}$
(b) $B=\{x: x+5<12\}$
(c) $C=\{x: 6<2 x<17\}$
(d) $D=\left\{x: x^{2}<37\right\}$

२। जि ब্যা आচए $U=\left\{x: 1 \leq x \leq 20, x \in Z^{+}\right\}$.
निচেন্ন সেটৈఠजো তनिকা পদ্ধতিতে প্রকাশ ক্ন :

(c) $C=\{x: x, 10$ जबत्र जणिত् $\}$

ঞ্রमత उश्यের आলোকে निচের बোन*তো সত্য বा মিধ্যা বन
$C \subset A, B \subset A, C \subset B$
৩। यनि $A=\{a, b, c, d, e\}$ इत्र, उরে $P(A)$ निर्ণग्र कন।

डেনচ্তিত্র (Venn Diagram)

 डেনচি্রি।

 সেট $A=\{x: 2 x>7\}$ এবং $A^{\prime}=\{x: 2 x \leq 7\}$ লেथाना হুना।

(a) P সেটের উপাদানधनো जनिका পদ্ধতিভে निষ
(b) P^{\prime} সেটের বর্ণना দাs
(c) $n\left(P^{\prime}\right)$ निर्वश्न कब

সมाषान : (a) $P=\{2,3,5,6,10,15,30\}$
(b) $P^{\prime}=\{x: x, 30$ जর উeপাদক নয় $\}$
(c) $n\left(P^{\prime}\right)=n(U)-n(P)$

$$
=29-7
$$

$$
\therefore n\left(P^{\prime}\right)=22
$$

সেটের্র সংযোগ

$E=\{e, n, g, l, i, s, h\}$
এবং $H=\{h, i, s, t, o, r, y\}$
(a) ভেনচিত্রে সার্বিক সেট U, E এবং H কে চিश্তি কন্ল
(b) भেট $\mathrm{E} \cup \mathrm{H}=\{x: x \in E$ অथবा $x \in H\}$ এ্র

সมाषান : (a) Coन fas
(b) डেনচি্র হভে পাই, $\{x: x \in E$ অथবা $x \in H\}$

$$
=\{e, n, g, l, i, s, h, t, o, r, y\}
$$

नञ কর্রি : সৌটি $\{x: x \in E$ অथবा $x \in H\}=\{e, n, g, l, i, s, h, t, o, r, y\}$
 প্রকাশ करा হ হ্র
অर्थाथ, $\mathrm{E} \cup H=\{x: x \in E$ खबया $x \in H\}$

$$
\begin{aligned}
U & =\{2,3,4,5,6,7,8,9\} \\
A & =\{x: x \text { बौनिक সशथ्था }\} \\
B & =\{x: x \text { बिजज़ए সংथ্যा }\}
\end{aligned}
$$

(a) $A, B \otimes \mathrm{~A} \cup \mathrm{~B}$ সেটেন্গ উপানান*नো তनिকাবক্ধ কর্ন :
(b) डেनচ্पির্রে $\mathrm{A} \cup \mathrm{B}$ দেঘাs
(c) সেট $\mathrm{A} \cup \mathrm{B}$ ォ সেট $\mathrm{A} \cup \mathrm{B}^{\prime}$ এ্র উপাদান*্তো जািকা পক্ধত্তে প্রকাশ ক্র।

সमाषान : (a) $A=\{2,3,5,7\}, B=\{3,5,7,9\}$ এবश $\mathrm{A} \cup \mathrm{B}=\{2,3,5,7,9\}$

(c) $\mathrm{A} \cup B=\{x: x \in A$ वा $x \in B\}=\{2,3,5,7,9\}$

$$
(\mathrm{A} \cup B)^{\prime}=\{4,6,8\}
$$

সেটের্ন ছেদ

$A=\{e, n, g, l, i, s, h\}$ এবश $B=\{h, i, s, t, o, r, y\}$ সशख्ञारिज कर्ति।

 $A \cap B=\{x: x \in A$ এবং $x \in B\}$

অनूब্পপडाবে आামনা পাই,

$$
\begin{aligned}
A \cap B^{\prime} & =\left\{x: x \in A \text { बবং } x \in B^{\prime}\right\}=\{e, n, g, l\} . \\
A^{\prime} \cap B & =\left\{x: x \in A^{\prime} \text { এবং } x \in B\right\}=\{t, o, r, y\} . \\
A^{\prime} \cap B^{\prime} & =\left\{x: x \in A^{\prime} \text { এবং } x \in B^{\prime}\right\} \\
& =\{a, b, c, d, f, j, k, m, p, q, u, v, w, x, z\} .
\end{aligned}
$$

निচেন্न ভ্নেচ্রিত্রে টপর্রেন সেটিজো দেথানো হলো :

ऊमाइत्रव 8 : मে ब्या आटर $U=\{1,2,3,4,5,6,7,8,9\}, A=\{2,4,6,8\}, B=\{4,8\}$ जবং $C=\{1,3,5,6\}$ ভ্লেচিত্র অशকन কর (a) $A \cap B$ बবश $A \cap B^{\prime}$
(b) $B \cap C$ এবং $B^{\prime} \cap C^{\prime}$

সयाधान : (a) बেহেহू $B \subseteq A$

$$
\begin{aligned}
& A \cap B=B=\{4,8\} \\
& A \cap B^{\prime}=A=\{2,6\}
\end{aligned}
$$

(b) $B \cap C=\{ \}$

$$
B^{\prime} \cap C^{\prime}=B=\{2,7,9\}
$$

A © B সেब্ब्य निए्श्म $\Leftrightarrow A \cap B=\Phi$

ऊमाइत्रव ©। $U=\{p, q, r, s, t, u, v, w\}, A=\{p, q, r, s\}, B=\{r, s, t\} \otimes C=\{s, t, u, v, w\}$

সयाधान : (a) $A \cap B=\{r, s\}$

$$
\begin{aligned}
& B \cap C=\{s, t\} \\
& C \cap A=\{s\}
\end{aligned}
$$

(b) $A \cap B \cap C=\{r, s\} \cap C=\{r s\} \cap\{s . t . u . v, w\}$

$$
=\{s\}
$$

 কన:
(a) $A \cap B$
(b) $A^{\prime} \cap B$
(c) $A \cap B^{\prime}$
(d) $A^{\prime} \cap B^{\prime}$

फেशाఆ बে, $n(A \cap B)+n\left(A^{\prime} \cap B\right)+n\left(A \cap B^{\prime}\right)+n\left(A^{\prime} \cap B^{\prime}\right)=n(U)$

সমাধাन :

(a) $\mathrm{A} \cap \mathrm{B}$

U

(b) $\mathrm{A}^{\prime} \cap \mathrm{B}$

(c) $\mathrm{A} \cap \mathrm{B}^{\prime}$

$n(A \cap B)+n\left(A^{\prime} \cap B\right)+n\left(A \cap B^{\prime}\right)+n\left(A^{\prime} \cap B^{\prime}\right)=n(U)$

$$
n(A \cap B)+n\left(A^{\prime} \cap B\right)+n\left(A \cap B^{\prime}\right)+n\left(A^{\prime} \cap B^{\prime}\right)=n(U)
$$

.উमাহ্রণ १। ভ্লেচ্চিত্রে গাঢ় কর্রে দেঘাs
(a) $A \cap(B \cup C)$
(b) $A \cup(B \cap C)$

সমাभान :

উमाश्रव ৮। $U=\{2,3,4,5,6,7,8,9,10\}, A=\{x: x$ जिए़়সश्च্যा $\}$
এবং $B=\{x: 7<3 x<25\}$
(a) $A, B, A \cap B, A \cup B$ এবश $A \cap B^{\prime}$ এর্র ঊপাদান*नো जनिका পদ্ধত্টি লেষ।

(c) x এর উপাদানสলো বাহित্র কর यেन $x \notin A$ এবং $x \notin B$

সমाषान : (a) $A=\{2,4,6,8,10\}$

$$
A \cap B=\{4,6,8\}
$$

$$
\begin{aligned}
& B=\{3,4,5,6,7,8) \\
& A \cup B=\{2,3,4,5,6,7,8,10\} \\
& A \cap B^{\prime}=\{2,10\}
\end{aligned}
$$

(b) $x \in A$ এবং $x \notin B$

$$
\Leftrightarrow x \in A \text { এবং } x \in B^{\prime}
$$

$$
\Leftrightarrow x \in A \cap B^{\prime}
$$

$$
\therefore x=2,10
$$

(c) $x \notin A$ এবং $x \notin B$
$\Leftrightarrow x \in A^{\prime}$ बবং $x \in B^{\prime}$
$\Leftrightarrow x \in A^{\prime} \cap B^{\prime}=\{9\}$
$\therefore x=9$
 $U=A \cup B \cup C$.

(a) $n(U)$ कढ ?

সমाषान : (a) $n(B)=n(C)$

$$
\begin{gathered}
x+3+y=y+8 \\
x=5
\end{gathered}
$$

(b) $n(B \cap C)=n\left(A \cup B^{\prime}\right)$

$$
y=6
$$

(c) $n(U)=6+x+3+y+8$

$$
\begin{aligned}
& =6+5+3+6+8 \\
& =28
\end{aligned}
$$

কाध :

(a) $A \cup A^{\prime}=U$
(b) $A \cap A^{\prime}=\Phi$

२। मिख्या आट्र $U=\{3,4,5,6,7,8,9\}, A=\{x: x$ बौनिक সश्্ा $\}$ बरश $B=\{x: x$ जোড় সश्ध्या $\}$ ভ্নেচ্ত্রের্র সাহা্যে সেট A এবং $A \cap B$ এর উপাদানষলোর जनिকা তৈत्रि কন।
मেचा® बে, (a) $A^{\prime} \cap B^{\prime}=\{9\}$
(b) $A \subseteq B^{\prime}$ এবং $A \subseteq A^{\prime}$.

मেওख्रा आடে, $n(A)=n\left(A^{\prime} \cap B\right)$ তाइनে
(a) x এत्र মাन निर्बय्ग কन्त
(b) $n(A) \bullet n(B)$ जत्त মान निर्ণश्न कत्र।

8। $U=\{p, q, r, s, t, u, v, w\}, A=\{p, q, r, s\}$
$B=\{r, s, t\}$ এবং $C=\{s, t, u, v, w\}$
(a) $n(A \cup B)=\overline{\text { o }}$?
(b) $(A \cup B)^{\prime}$ এবং $A \cup B \cup C$ এর উभाদাनєनোর जनिক़ तৈब्रि কর।
©। डেनচিত্রে भाफ़ (Shade) कदে नেथाब : (a) $(P \cap Q) \cap R^{\prime} \quad(b)\left(A \cap B^{\prime}\right) \cup C$

সেট প্রক্রিয়ার্ন ধর্মাবनি

 आनোচ্না কর্গা হলো :

थ্রढिछ্刀 ১। বिनिমर्र निग्रम ((Commutative law))
มनে কর্রি, $A=\{1,2,4\}$ এবং $B=\{2,3,5\}$ দूইটি সেট। তাহলে

$$
\begin{aligned}
A \cup B & =\{1,2,4\} \cup\{2,3,5\} \\
& =\{1,2,4,3,5\} \\
B \cup A & =\{2,3,5\} \cup\{1,2,4\} \\
& =\{2,3,5,1,4\}
\end{aligned}
$$

অতএব, $A \cup B=B \cup A$
এरইजाবে आবाর, $A=\{a, b, c\}$ এবং $B=\{b, c, a\}$ निल্যে मেथानো याয় $A \cup B=B \cup A$

$$
A \cup B=B \cup A
$$

এঢিই সংয়াগ সেটেত্র বিनिময় বিथि।

$$
A \cap B=B \cap A
$$

थতিজ্ঞा २। সरखयाजन निख्रा (Associative law)

$B \cup C$ रढना গাঢ় অッ凶্রু

जिद-b (i)

চिञ-a (ii)

bिa-b (ii)

 এघान $B \cup C=\{b, c, f\} \cup\{c, d, g\}$

$$
=\{b, c, f, d, g\} .
$$

এবং $A \cup(B \cup C)=\{a, b, c, d\} \cup\{b, c, f, d, g\}$

$$
\begin{equation*}
=\{a, b, c, d, f, g\} . \tag{i}
\end{equation*}
$$

এघन, $A \cup B=\{a, b, c, d\} \cup\{b, c, f\}$

$$
=\{a, b, c, d, f\}
$$

बবং $(A \cup B) \cup C=\{a, b, c, d, f\} \cup\{c, d, g\}$

$$
\begin{equation*}
=\{a, b, c, d, f, g\} . \tag{ii}
\end{equation*}
$$

(i) $\otimes(i i)$ रढে आমन्ता পাই, $A \cup(B \cup C)=(A \cup B) \cup C$

সাবান্রণত, यেকোনো তিনটি সেট $A, B \subset C$ এর্র অन্য

$$
A \cup(B \cup C)=(A \cup B) \cup C
$$

অर्थाथ, $A \cap(B \cap C)=(A \cap B) \cap C$

थ्रजिछ্ঞ ৩। $A \cup A$: बत खन्या «ति $A=\{2,3,5\}$

$$
\begin{aligned}
A \cup A & =\{2,3,5\} \cup\{2,3,5\} \\
& =\{2,3,5\} \\
& =A
\end{aligned}
$$

একইভাবে $A=\{x, y, z\}$ निয়ে फেथानো যাহ বে, $A \cup A=A$
\therefore भिद্धান্ত : যেকোनো সৌ A এর্ন जन्য

$$
A \cup A=A
$$

একইভাবে निखে কর্ন : $A \cap A=A$
थ्रजिख्धा 8 । यमि $A \subset B$ उघन $A \cup B=B$.
यधि, $A=\{1,2,3\}$ এবং $B=(x \mid x \in N, 1 \leq x \leq 5\}$ मूইঢি সেট।
$\therefore A=\{1,2,3\}$ এবং $B=\{1,2,3,4,5\}$
$\therefore A \subset B$.
এ『न $A \cup B=\{1,2,3\} \cup\{1,2,3,4,5\}$

$$
\begin{aligned}
& =\{1,2,3,4,5\} \\
& =B .
\end{aligned}
$$

এडाবে, यमि $A \subset B$ उथन $A \cup B=B$ बবং यमि $B \subset A$ उशन $A \cup B=A$.
একইडाबে निखে কন্ন : $A \subset B$ उघन $A \cap B=A$ এবश यमि $B \subset A$ उशन $A \cap B=B$

সুত্রাং, R_{1}, R_{2} এবश R_{3} এनाका $A \cup B$ এর্र অతर्ड्रक्ञ।
कित्ड R_{1} जবश R_{2} অक्षन R_{1}, R_{2} এবश R_{3} এनाকात्र অबुर्ण
i.e. $A \subset(A \cup B)$.

$$
A \subset(A \cup B) \text { बবং } B \subset(A \cup B)
$$

प्रষ্যা : একইভাবে निর্জে কন্ন : যেকোनো সেট A এবং B এর্ন অन্য $(A \cap B) \subset A$ এবং $(A \cap B) \subset$
«जिজ্ঞा ৬। $A \cup U=U$ এবং $A \cup \Phi=A$ आমन्रा जनि, $A \subset U$ এবং $\Phi \subset A$ (4) नः ४र्মानूयाश़ी, $A \cup U=U$ এবः $A \cup \Phi=A$

কাজ:

১। $A \cup B$ निर्वт কন যঘন
$A=\{x \mid x$ भृर्बসशথ্যा, $-2 \leq x<1\}$ जবং $B=\{x \mid x$ बীनिक সशখ্যा, $24 \leq x \leq 28\}$

२। $A \cup U$ निर्बश কন खেষাनে $U=\{x \mid x$ भূর্ণসशच्या, $-2<x<3\}$ এবश
$A=\{x \mid x \in z,-1<x \leq 1\}$
৩। यमि $A=\{2,3,5\}, B=\{a, b, c\}, C=\{2,3,5,7\}$ এবং
$D=\{a, b, c, d\}$ इহ, उরে প্রমাণ কর্গ বে, $(A \cup B) \subset(C \cup D)$
8। $A=\{a, b, c\}$ এবং $B=\{b, c, d\}$ बत् जन्ड याচাই कर্ম $A \cap B=B \cap A$.
©। यमि $A=\{1,3,5,7\}, B=\{3,7,8\}$ এবং $C=\{7,8,9\}$ হर, उदে फেशাఆ यে, $(A \cap B) \cap C=(B \cap C) \cap A$.

थडिछ্धा १। বन्টन नियूय (Distributive Law)
A, B, C ख্যোनো সেট হলে, मেथाध यে,
(क) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(घ) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
প্াण : মनে কন্রি, $x \in A \cup(B \cap C)$
जारलन $x \in A$ অथया $x \in B \cap C$

$$
\begin{align*}
& \Rightarrow x \in A \text { অथবा }(x \in B \text { এবং } x \in C) \\
& \Rightarrow(x \in A \text { অथবा } x \in B) \text { এবং }(x \in A \text { অथবा } x \in C) \\
& \Rightarrow x \in A \cup B \text { এবং } x \in A \cup C \\
& \Rightarrow x \in(A \cup B) \cap(A \cup C) \tag{i}
\end{align*}
$$

$\therefore A \cup(B \cap C) \subset(A \cup B) \cap(A \cup C)$
आবात्र মनन कनि, $x \in(A \cup B) \cap(A \cup C)$
जाइलে, $x \in A \cup B$ এবং $x \in A \cup C$

$$
\begin{align*}
& \Rightarrow(x \in A \text { অथया } x \in B) \text { बবং }(x \in A \text { অथया } x \in C) \\
& \Rightarrow x \in A \text { অथবा }(x \in B \text { এবং } x \in C) \\
& \Rightarrow x \in A \text { অथना } x \in B \cap C \\
& \Rightarrow x \in A \cup(B \cap C) \tag{ii}
\end{align*}
$$

$\therefore(A \cup B) \cap(A \cup C) \subset(A \cup(B \cap C)$
भूত্মাং (i) © (ii) इढত পাওख्या याग $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(凶) একইजाবে निजজ बन।

काज :

$A=\{1,2,3,6\}, B=\{2,3,4,5\}$ এবং $C=\{3,5,6,7\}$
(ii) ब্রমাগঢি डেनচিভ্রের মাব্যCম जেचাs

थ্রিজ্ঞা ৮। म্যা মন্রण্যানनন সৃত্র（De Morgans law）：
भार्बिक भেট U এর্র যেকোनো উপসেট A ® এর অन্য（क）$(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
（»）$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
थ्रमाण（क）：मटन करि，$x \in(A \cup B)^{\prime}$
丁ारलে，$x \notin A \cup B$
$\Rightarrow x \notin A$ এবং $x \notin B$
$\Rightarrow x \in A^{\prime}$ এবং $x \in B^{\prime} .$.
$\Rightarrow x \in A^{\prime} \cap B^{\prime}$
$\therefore(A \cup B)^{\prime} \subset A^{\prime} \cap B^{\prime}$
आবाা्र घढन কति，$x \in A^{\prime} \cap B^{\prime}$
णारजन，$x \in A^{\prime}$ अथया $x \in B^{\prime}$
$\Rightarrow x \notin A$ खथया $x \notin B \Rightarrow x \notin A \cup B$
$\Rightarrow x \in(A \cup B)^{\prime}$
$\therefore A^{\prime} \cap B^{\prime} \subset(A \cup B)^{\prime}$
সুত্রাং $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$ ঞ্রাপিত।
（घ）অनूत्रপভাবে निত大 কর ：

ब्रमाण ：মनে बति，$x \in A \backslash B$
जारलে $x \in A$ 』বং $x \notin B$
$\Rightarrow x \in A$ এবং $x \in B^{\prime}$
$\therefore x \in A \cap B^{\prime}$
$\therefore A \backslash B \subset A \cap B^{\prime}$
आयात्र घनि कत्रि，$x \in A \cap B^{\prime}$
जारলে，$x \in A$ এবং $x \in B^{\prime}$
$\Rightarrow x \in A$ এবং $x \notin B$
$\therefore x \in A \backslash B$
$\therefore A \cap B^{\prime} \subset A \backslash B$
সুতन्নাং，$A \backslash B=A \cap B^{\prime}$
ब্রতিজ্ঞ ১০। যেকোनো भেট A, B, C बর্র जन্য
（क）$A \times(B \cap C)=(A \times B) \cap(A \times C)$
（घ）$A \times(B \cup C)=(A \times B) \cup(A \times C)$
ब্রমাণ ：（क）সংब্वानूসাত্র

$$
\begin{aligned}
& A \times(B \cap C) \\
& =\{(x, y): x \in A, y \in B \cap C\}
\end{aligned}
$$

$$
\begin{aligned}
&=\{(x, y): x \in A, y \in B \text { এবং } y \in C\} \\
&=\{(x, y):(x, y) \in A \times B \text { এবং }(x, y) \in A \times C\}=\{(x, y):(x, y) \in(A \times B) \cap(A \times C) \\
& A \times(B \cap C) \subset(A \times B) \cap(A \times C)
\end{aligned}
$$

आবার $(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
$=\{(x, y):(x, y) \in A \times B$ এবং $(x, y) \in A \times C\}$
$=\{x, y): x \in A, y \in B$ এবং $x \in A, y \in C\}$
$=\{(x, y): x \in A, y \in B \cap C\}$
$=\{(x, y):(x, y) \in A \times B \cap C\}$
$\therefore \quad(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C}) \subset \mathrm{A} \times(\mathrm{B} \cap \mathrm{C})$
अर्थाथ $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
(凶) অनूক্ৰপভाরে निजि बন।
১১। সেট थ্রক্রিरा সशত্রান্ত आর্রে কতিপশ থ্রতিख্যা :
(क) A खयকোनো সেট रলে $A \subset A$
(घ) सাঁকা সেট Φ य্যেকেনো সেট A এর্ন উপসেট
(গ) A ® यেকোनো সেট হলে $A=B$ रবে यमि ৪ बেবল यमि $A \subset B$ এবश $B \subset A$ इश्र।
(घ) यमि $A \subset \Phi$ एश, उত্রে $A=\Phi$
(ङ) यमि $A \subset B$ এবश $B \subset C$ बবে, $A \subset C$
(Б) A ®
(छ) A ® यেলেनো সেট হলে $A \subset A \cup B$ এবং $B \subset A \cup B$

$\therefore \Phi \notin A$ मज्य नख

$\therefore \Phi \in A$

 সংख্ঞानूयाशी $A \subset A \cup B$ । এकई यক্তে $B \subset A \cup B$

১। मেঘाs बে : $A \cap(B \cap C)=(A \cap B) \cap(A \cap C)$

(ङ) $A \cap B=A$
(घ) $A \cup B=B$
(श) $B^{\prime} \subset A$
(घ) $A \cap B^{\prime}=\Phi$
(8) $B \cup A^{\prime}=U$

৩। मেचाง खে,
(क) $A \backslash B \subset A \cup B$
(घ) $A^{\prime} \backslash B^{\prime}=B \backslash A$
(গ) $A \backslash B \subset A$
(घ) $A \subset B$ रलन . $A \cup(B \backslash A)=B$
(ङ) $A \cap B=\Phi$ इल. $A \subset B^{\prime}$ बবং $A \cap B^{\prime}=A$ এবং $A \cup B^{\prime}=B^{\prime}$
8 । দেথাs खে,
(क) $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$
(घ) $(A \cup B \cup C)^{\prime}=A^{\prime} \cap B^{\prime} \cap C^{\prime}$
(ๆ) $(A \cap B \cap C)^{\prime}=A^{\prime} \cup B^{\prime} \cup C^{\prime}$

সমতুল 8 অসীম সেট

এক-এক মিन (One One Correspondence)

มनে बति, $A=\{a, b, c\}$ जिनजन नোকের সেট এবং $B=\{30,40,50\}$ § ত্निजन नোকেत বरूসের্গ সেট।

সুতন্নাং বना याয় बে, A अেটেন্ন সাথথ B সেটেন এক-बक মিन आएए।

 करा इश।

সমতুল সেট (Equivelent set)

 হাপন কর্রে দেষান্না হলো :

 যেকোनো একजिকে অপরजिब সাথে সমতুল বना इয়।

ঊमাহ্রণ ১০। দেथাఆ बে, $A=\{1,2,3, \ldots \ldots . . . n\}$ এবং $B=\{1,3,5, \ldots \ldots \ldots . .2 n-1\}$ अসট্ব্য সম একটি শ্গাভবিক সश्था।

সুত্রাং $A \diamond B$ সেট দूইটি সমতুन।

সমতুन।
 रूना

সুত্রাং $N \in A$ সমতুन সেট।

প্রমাণ : $A \sim \Phi$ रलन, $A \sim A$ «द্রा इয় ।
มनে কत्रि, $A \neq \Phi$

 शाभिउ इय्र।
भूতनाश $A \sim A$.

थधिख্ঞ २ : यमि $A \in B$ সমতून সেট হয় এবং $B \in C$ সমতুन সেট হয়, তবে $A \in C$ সমতুन সেট হবে।

 একটি এক-এक মिन झ্शाপिত इए। অर्थाৎ, $A \sim C$ इख।

সাম্ড়ু অনন্ড়িসট (Finite and Infinite sets)

 কন্না इহ। बেমन,

 সেট ধরা হহ্র।

 সাব্ত সেট এবং A এর সদস্য সशথ্যা m ।

(ঘ) কোলো সেট A সান্ত সেট না হলে, একে অनক্ত সেট বলা হহ্য।
 $n\left(J_{1}\right)=1, n\left(J_{2}\right)=2, n\left(J_{3}\right)=3$ ইত্যাদি।

 $n(A)=n(B)$ रবে।

थতিজ্ঞ ৩। यनि A সাత্ত সেট হহ এবং B, A এর্র थকৃত টপসেট হয়, তবে B সান্ত সেট এবং $n(B)<n(A)$ रूে।

দ্রষ্ব্য ৫। N একট অनব্ট সেট (টদাহর্রণ ১১ দ্রষ্যা)।

সান্ড়সটের্র উপাদান সংথ্যা

 रत्राप्रे।
มनে कत्रि, $n(A)=P>0, n(B)=q>0$, यেथाजन $A \cap B=\Phi$

অर्बाथ, $n(A \cup B)=p+q=n(A)+n(B) \backsim$ थেকে বना याয় बে,
 এই ধতিজ্ঞाক সমপ্রসান্রণ করে বना याশ बে, $n(A \cup B \cup C)=n(A)+n(B)+n(C)$

$$
n(A \cup B \cup C \cup D)=n(A)+n(B)+n(C)+n(D) \text { ইত্যাদি, }
$$

$$
\begin{align*}
& A=(A \backslash B) \cup(A \cap B) \\
& B=(B \backslash A) \cup(A \cap B) \\
& A \cup B=(A \backslash B) \cup(A \cap B) \cup(B \backslash A) \\
& \therefore n(A)=n(A \backslash B)+n(A \cap B) \ldots . .(i) \\
& n(B)=n(B \backslash A)+n(A \cap B) \ldots \ldots \ldots .(i l \tag{ii}
\end{align*}
$$

$n(A \cup B)=n(A \backslash B)+n(A \cap B)+n(B \backslash A)$

সুতत্木ाং, (i) नং थেকে পাই, $n(A \backslash B)=n(A)-n(A \cap B)$
(ii) নং থেকে পাই, $n(B \backslash A)=n(B)-n(A \cap B)$

এघन, $n(A \backslash B)$ এবং $n(B \backslash A)$ (iii) नং $₫$ बभिढ़ে পাই,

$$
\begin{aligned}
& n(A \cup B)=n(A)-n(A \cap B)+n(B)-n(A \cap B)+n(A \cap B) \\
\therefore & n(A \cup B)=n(A)+n(B)-n(A \cap B)
\end{aligned}
$$

बाब:

১। निद्या
(क) $A=\{a, b\} \quad B=\{1,2\}$.
(ઘ) $A=\{a, b, c\} \quad B=\{a, b, c\}$
 जनिका পদ্ধতিতে বর্ণनা কন্ন।

 মिन ছাপিত হহ্য खেथাनে, $a \leftrightarrow 3$ ।
8। निशोध बে, $A=\{1,2,3, \ldots \ldots . . . n\}$ बरश $B=\left\{1,2,2^{2}\right.$, \qquad $\left.2^{m+1}\right\}$ সেট দूইঢि সমঢून।
৫। नেथाब बে, $S=\left\{3^{n}: n=0\right.$ অथবा $\left.n \in N\right\}$ ศেটট N बর সমত্न।

শজি সেট

 रलिा :

উमাহत्रণ ১२। यमि $A=\{1,2,3\}$ এবং $B=\{2,3,4\}$ इश्र, उব্বে দেথাs बে, $P(A) \cap P(B)=P(A \cap B)$
সমাধাन : এघानে, $A=\{1,2,3\}$ এবং $B=\{2,3,4\}$
भूত্রাং, $P(A)=\{\Phi,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$
এবং $\mathrm{P}(\mathrm{B})=\{\Phi,\{2\},\{3\},\{4\},\{2,3\},\{2,4\},\{3,4\},\{2,3,4\}\}$
$\therefore \mathrm{P}(\mathrm{A}) \cap \mathrm{P}(\mathrm{B})=\{\Phi,\{2\},\{3\},\{2,3\}\}$
এघन, $A \cap B=\{1,2,3\} \cap\{2,3,4\}$

$$
=\{2,3\}
$$

$\therefore P(\mathrm{~A} \cap \mathrm{~B})=\{\Phi,\{2\},\{3\},\{2,3\}\}$
भूত্রাः $P(A) \cap P(B)=P(A \cap B)$.

উमাহ্রণ ১৩। यमि $A=\{a, b\}$ बবश $B=\{b, c\}$ इश，उবে দেथाब বে，$P(A) \cup P(B) \subset P(A \cap B)$
সমাধাन ：এघानि， $\mathrm{P}(\mathrm{A})=\{\Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{a}, \mathrm{b}\}\}$

$$
P(\mathrm{~B})=\{\Phi,\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\}
$$

$\therefore P(\mathrm{~A}) \cup \mathrm{P}(\mathrm{B})=\{\Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{b}, \mathrm{c}\}\}$
आदाब，$A \cup B=\{a, b, c\}$
$\therefore \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\{\Phi,\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\},\{\mathrm{a}, \mathrm{b}\},\{\mathrm{a}, \mathrm{c}\},\{\mathrm{b}, \mathrm{c}\}\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}\}$
भूৰ्্वाং，$P(A) \cup P(B) \subset P(A \cap B)$ ．

কাজ：

১। यमि $A=\{1,2,3\}, B=\{1,2\}, C=\{2,3\}$ जবং $D=\{1,3\}$ इয，उরে मেথাब বে， $P(\mathrm{~A})=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D},\{1\},\{2\},\{3\}, \Phi\}$
२। यमि $A=\{1,2\}$ এবং $B=\{2,5\}$ इश，उবে जেথাও वে， $P(\mathrm{~A})=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D},\{1\},\{2\},\{3\}, \Phi\}$.
（i）$P(A) \cap P(B)=P(A \cap B)$
（ii）$P(A) \cup P(B) \neq P(A \cup B)$ ．

বাস্ত্ক সমস্যা সমাধানে সেট ：

 बड जन ？
 বাश्ना বनঢত পার্র তাদের সেট B ।
जारतে ঞ্রশানুসারে，$n(S)=50, n(E)=35, n(E \cap B)=25$ এবং
$S=E \cup B$
มढन कबि，$n(B)=x$
丁ारजে，$n(S)=n(E \cup B)=n(E)+n(B)-n(E \cap B)$ थেबে পাই， $50=35+x-25$

या，$x=50-35+25=40$
অर्बाए，$n(B)=40$
\therefore বाश्ना बनढ़ পার্র 40 जन।
এঘन，याর্গা কেবল বাং্লা বনতে পারে，তাদদ্র সেট হচছছ（B\E）।
 प्रষ্য]]
সুख्वाश $n(B)=n(E \cap B)+n(B \backslash E)$
$\therefore 40=25+y$
বा, $y=40-25=15$
অर्बाе, $n(B \backslash E)=15$
 भाज़ 15 जन।

डেনচ্টির্রে পাঢ় बর্রে লেथাब।

 फেशाध।

সभाधान : (a) (i) $x \in H$ এবং $x \in G$ ie. $x \in H \cap G$
(ii) $x \in H$ बবए $x \notin G$ i.e. $\mathrm{H} H \mathrm{G}$

(b) «র্রি, ইতিহাস বিষড্যে পড়েচে এমন ছাত্রদের সেট H

 यद्धि, $n(H \cap G)=x$
बোেতু এক বিষয়ে অন্তত পত্যেকে পড়োছ $H \cup G=\cup$
$n(H \cup G)=n(U)$
i.e. $(22-x)+x+(15-x)=32$

$$
\Rightarrow 37-x=32
$$

$\therefore \quad x=5$

 नाठে नय।
 ฟাতার পহ্দ করে।

(b) x निर्वयय क्र

সयाभान : (a)
«धि, সেট্ট $J=$ यात्रा Mৗड़ পহ্দ্দ করে

$$
S=\text { यাज্রা আতান পহ্র্দ কর্রে }
$$

$D=$ यात्रा नाए পহ্দ কর্রে
(b) $J^{\prime}=\{$ बय সব বাनिका পौড় পश्म बढে ना $\}$

$$
n\left(J^{\prime}\right)=20
$$

বा, $2 x+x+2=20$
বा, $3 x=18$
$x=6$

$$
0 \text {) }
$$

- $x=6$
 $J \cap D \cap S^{\prime}$
(d) यधि, $n\left(J \cap D \cap S^{\prime}\right)=y$

$$
\begin{aligned}
& \text { अেఆख्रा आएए } n(J)=15 \\
& \begin{aligned}
y+4+7+2 & =15 \\
y & =2
\end{aligned}
\end{aligned}
$$

भयाधान :

$$
n(B \cup V)=(18-x)+x+(12-x)=30-x
$$

$\therefore n(B \cup V)=(18-x)+x+(12-x)=30-x$
(b) $n(B \cap V)$ इ్्रদ्वত्ম यथन $B \cup V=U$ उशन, $n(B \cup V)=n(U)=30-x=24$ दा $x=6$
\therefore मद्षाब्य ल्रूप्रज्य मान $x=6$
(c) $n(B \cap V)$ दৃহख्य यथन $V \subseteq B=U$ उथन , $n(B \cap V)=n(V)=x=12$
\therefore मट्टार्य दृरब्य घान $x=12$

बाब:

 দूইजित्र बোनजिए जেयनि ?

অनूশীननी ১•১

ii. সকन मृनम সং্থাत्र भেট $Q=\left\{\frac{p}{q}: p, q \in Z, q \neq 0\right\}$
iii. $a, b \in R ;] a, b[=\{x: x \in R$ बবং $a<x<b\}$

ऊभज্রে उথ্থের্ন आनোকে निচ্ন্न কোनি সঠिক ?
क. $i \in i i$ थ. $i i$ © $i i i$
গ. $i \in i i i$
ข. $i, i i$ © $i i i$

निচে্ন তथ্যেব্র आनোকে（২－৪）নং প্রশ্নের্ম উত্র দাब ：
ঞ্্যেक $n \in N$ जর बन्ग $A_{n}=\{n, 2 n .3 n$ ． \qquad ．．）
२। $A_{1} \cap A_{2}$ এর घान निषणन्न बোनটি ？
द．A_{1}
凶．A_{2}
ๆ．A_{3} च．A_{4}

৩। निচেন্ন बোनঢि $A_{3} \cap A_{6}$ बत्र घान निर्मেष कर্রে ？
द．A_{2}
凶．A_{3} ๆ．A_{4} ข．A_{6}
8। $A_{2} \cap B_{3}$ এत পत्रियर्ड निवেन्र बোनঢि निषा याग्र ？
द．A_{3}
ข．A_{4}
ๆ．A_{5} ข．A_{6}

Q। निब्या आरे $U=\{x: 3 \leq x \leq 20, n \in Z\}, A=\{x: x$ बिजजाড় সश्্যा $\}$ এবং $B=\{x: x$ גौनिक

（a）A এবং B
（b）$C=\{x: x \in A$ GR $x \in B\}$ এবং
$D=\{x: x \in A$ অथया $x \in B\}$
সেট C এবং D এর বর্ণनা मাs
 （a）x এর মान $(b) n(A \cup B)$ এবং $n\left(A \cap B^{\prime}\right)$ ．

（a）x जর घাन
（b）$n(A)$ এবং $n(B)$

৮। यनि $U=\{x: x$ «नाखক পृर्बসश्धा $\}, A=\{x: x \geq 5\}$ जবং $B=\{x: x<12\}$
उবে $n(A \cap B)$ এবং $n\left(A^{\prime}\right)$ जর মাन निर्बग्र कন্গ।
 $n(A \cap B)$ बবং $n\left(A^{\prime} \cap B^{\prime}\right)$ এরत মাन निर्वयू कर।
১০। जেথা बে，（\％）$A \backslash A=\Phi \quad$（घ）$A \backslash(A \backslash A)=A$
১ゝ। मেथाఆ बে，$A \times(B \cup C)=(A \times B) \cup(A \times C)$
১২। यमि $A \subset B$ এবश $C \subset D$ इश，उবে দেथাब बে，$(A \times C) \subset(B \times D)$
১৩। मেशাఆ बে．$A=\{1.2 .3 n\}$ बবং $B=\left\{1.2 .2^{2} \ldots2^{n-1}\right\}$ সেট দूरोज সমड़न।
 \qquad ）बকটि অব্ अে।

১৫। धมाๆ কন্ম बে，$n(A)=p, n(B)=q$ এবং $A \cap B=\Phi$ এবং হनन，$n(A \cup B)=p+q$ ।
১৬। প্রমাণ কর बে，A, B, C সান্ত अেট रুল，
$n(A \cup B \cup C)=n(A)+n(B)+n(C)-n(A \cap B)-n(B \cap C)-n(C \cap A)+n(A \cap B \cap C)$ ।
 कन्ब बय，（a）（i）$A \subset B^{\prime}, \quad$（ii）$A \cup B^{\prime}=B^{\prime}$, （iii）$A^{\prime} \cap B=B$
（b）निर्वश्ग কর ：$(A \cap B) \cup\left(A \cap B^{\prime}\right)$

（a）यमि $n(A \cap B)=n(B \cap C)$ इरा，उ＜大 x जর্র মাन निर्वश्र कन्त।
（b）यमि $n\left(B \cap C^{\prime}\right)=n\left(A^{\prime} \cap C\right)$ एत，उद大 y बत मान निर्वश्र कन्त।
（c）$n(U)$ जत्त মাन निर्वश्न कन्त्र।

（a）यमि $n(U)=50$ इश，एढে x এর মাन निर्वश्र कर।
（b）$n\left(B \cap C^{\prime}\right)$ बবः $n\left(A^{\prime} \cap B\right)$ এর্त মাन निर्ণख बत্র
（c）$n\left(A \cap B \cap C^{\prime}\right)$ जत्त মাन निर्णग कर

२२। मেधरा आएश $A=\{x: 2<x \leq 5, x \in R\}$ जनং $B=\{x: 1 \leq x<3, x \in R\}$
এবং $C=\{2,4,5\}$ निप्মूत्र अটुधनना অनूक्रপ set notation এ ঞ্রকাশ কন্ম ：
（a）$A \cap B$
（b）$A^{\prime} \cap B^{\prime}$ बবश（d）$A^{\prime} \cup B$

र৩। मে बश्रा आढए $U=\{x: x<10, x \in R\}, A=\{x: 1<x \leq 4\}$ এবश $B=\{x: 3 \leq x<6\}$ ．निচ্রে সটயতना অनूক্গপ সেট চিহ্ন্র মাব্যCম প্রকাশ কन্গ ：
（a）$A \cap B$
（b）$A^{\prime} \cap B$
（c）$A \cap B^{\prime}$ बবং（d）$A^{\prime} \cap B^{\prime}$
 $B \subset(A \cup B)$
i．$A=\{-2 .-1,0,1,2\}$ এবং $B=\{-3,0,3\}$
ii. $A=\{x: x \in N, x<10$ এবং $x, 2$ जর্র ЄणिШ्क $\}$

$(A \cap B \subset A$ এবং $(A \cap B) \subset B$
(i) $A=\{0,1,2,3,5\}, B=\{-1,0,2\}$
(ii) $A=\{a, b, c, d\}, B=\{b, x, c, y\}$

२१। $A=\left\{x: x \in R\right.$ এবং $\left.x^{2}-(a+b) x+a b=0\right\}$
$B=\{1,2\}$ बবং $C=\{2,4,5\}$
ক. A সেটেন্ন টপাদানসমূহ নির্ণথ্ন কন্ন।
च. जেचाఆ बय, $P(B \cap C)=P(B) \cap P(C)$
গ. গ্রমাণ कन्त यে, $A \times(B \cup C)=(A \times B) \cup(A \times C)$

 7 बन কোनো चেनाश्र পান্রमशी नश्रा-
 ভেনচিত্রে লেষাe-

The END of first chapter

পঞ্ণম অধ্যায়

বীজগণিতে অজ্ঞাত বা চলরাশি খুবই পুরুত্পূর্ণ ইহা পৃর্বেও আলোচনা করা হয়েছে। বাস্তব জীবনে অনির্দিষ কোনো বন্তু, সংখ্যা বা বষ্ধ্রসমূহকে বুঝানোর জন্য आমরা x, y, z ইত্যাদি প্রতীক ব্যবহার করি। এই রকম প্রতীক বা প্রতীকসমূহকে চলক বা অজ্ঞাত রাশি বলে। একাধিক চলক বা অজ্ঞাত রাশির সমন্বয়ে রাশিমালার সৃষ্টি হয়। যেমন, $2 x+y, x^{2}+z, x+y+2 z$, ইত্যাদি। আবার কোনো অজ্ঞাত রাশি বা রাশিমালা যখন নির্দিষ্ সংখ্যার বা মানের সমান লিখা হয় তখন তাকে সমীকরণ বলে। বীজগণিতে সমীকর্ণ খুবই ঞুরুত্ণৃণর্ণ একটি বিষয়। ইহার সাহায্যে অনেক বাস্তব সমস্যা সহজেই সমাধান করা যায়।

অধ্যায় শেढে শিকক্কীর্थীরা -
দ্বিঘাত সমীকরণ $\left(a x^{2}+b x+c=0\right)$ সমাধান করতে পারবে।
> বর্গমূলবিশিষ্ট সমীকরণ চিহ্চিত করতে পারবে।
> বর্ণমূলবিশিষ্ট সমীকরণণ সমাধান করতে পারবে।
$>$ সূচকীয় সমীকরণ ব্যাখ্যা করতে পারবে।
> সৃচ্ীীয় সমীকরণ সমাধান করতে পারবে।
> দুই চলরের একঘাত ও দ্বিঘাত সমীকরণের জোট সমাধান করতে পারবে।
> বাচ্ত্বভিত্তিক সমস্যাকে দুই চলকের একঘাত ও দ্বিঘাত সমীকরণে প্রকাশ করে সমাধান করতে পারবে।
> দুই চলকবিশিষ্ট সূচকীয় সমীকরণ জোট সমাধান করতে পারবে।
$>$ लেখচিচ্রের সাহাব্যে দ্বিযাত সমীকরণ $\left(a x^{2}+b x+c=0\right)$ সমাধান কনতত পারবে।

৫.১ এক চলক সমন্বিত দ্বিঘাত সমীকরণ ও তার সমাধান

মাধ্যমিক বীজগণিতে এক চলকের একঘাত ও দ্বিঘাত সমীকর্ণণ এবং দুই চলকের একঘাত সমীকরণ বিষয়ে বিশদ আলোচনা করা হয়েছে। বীজখলো মূলদ সংখ্যা হলে, এক চলকের দ্বিঘাত সমীকরণের বামপক্ককে উৎপাদকে বিশ্নেষণ করে সহজেই তার সমাধান করা যায়। কিন্ট সব রাশিমানাকে সহজে উৎপাদকে বিশ্নেষণ করা যায় না। সে জন্য যেকোনো প্রকার ম্বিঘাত সমীকরণের সমাধানের জন্য নিম্নলিথিত পদ্ধতিটি ব্যবহার করা হয়।

এক চলক সমন্বিত দ্বিঘাত সমীকরণের আদর্শ্রপ $a x^{2}+b x+c=0$. এখানে a, b, c বাস্তব সংখ্যা এবং a এর মান কখনই শূন্য হতে পারবে না।
আমরা দ্বিঘাত সমীকর্ণণঢি্রি সমাধান করি,
$a x^{2}+b x+c=0$
বা, $a^{2} x^{2}+a b x+a c=0$ [উভয়পক্শকে a ছ্ञाরা তুণ করে]
বा, $(a x)^{2}+2(a x) \frac{b}{2}+\left(\frac{b}{2}\right)^{2}-\left(\frac{b}{2}\right)^{2}+a c=0 \quad$ या, $\left(a x+\frac{b}{2}\right)^{2}=\frac{b^{2}}{4}-a c$
বा, $\left(a x+\frac{b}{2}\right)^{2}=\frac{b^{2}-4 a c}{4}$
বा, $a x+\frac{b}{2}= \pm \frac{\sqrt{b^{2}-4 a c}}{2}$

বा, $a x=-\frac{b}{2} \pm \frac{\sqrt{b^{2}-4 a c}}{2} \quad$ বा, $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
অতএব, x এর দুইটি মান পাওয়া গেল এবং মান দুইটি হচ্ছে
$x_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$
(ii) এবং $x_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$

উপরের (i) নং সমীকরণে $b^{2}-4 a c$ কে দ্বিঘাত সমীকরণটির নিচায়ক বলে কারণ ইহা সমীকরণটির মূলদ্বয়ের ধরন ও প্রকৃতি নির্ণয় করে।
নিশাচ়কের অবস্থাভেদে দ্বিঘাত সমীকণের মূলদ্বয়ের ধরন ও প্রকৃতি
(i) $b^{2}-4 a c>0$ এবং পূর্ণবর্গ হলে সমীকরণটির মূলদ্বয় বাস্তব, অসমান ও মূলদ হবে।
(ii) $b^{2}-4 a c>0$ কিন্ত পূর্ণবর্গ না হলে সমীকরণটির মূলদ্বয় বাস্তব, অসমান ও অমূলদ হবে।
(iii) $b^{2}-4 a c=0$ হলে সমীকরণটির মূলদ্দয় বাস্তব ও পরস্পর সমান হবে। এক্ষেত্রে $x=-\frac{b}{2 a},-\frac{b}{2 a}$.
(iv) $b^{2}-4 a c<0$ অর্থাৎ ঋণাত্দক হলে মূলদ্বয় অবাস্তব হবে। এক্ষেত্রে মূলদ্বয় সবসময় দুইটি অনুবক্ধী জটিল বা কাল্পনিক সংখ্যা হয়। এ বিষয়ে উচ্চতর শ্রেণিতে জানতে পারবে।

উদাহরণ ১। $x^{2}-5 x+6=0$ এর সমাধান কর।
সমাধান : $a x^{2}+b x+c=0$ সমীকরণের সাথে তুলনা করে এক্ষেত্রে পাওয়া যায় $a=1, b=-5$ এবং $c=6$. অতএব সমীকরণঢির সমাধান
$x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4.1 .6}}{2.1}=\frac{5 \pm \sqrt{25-24}}{2}=\frac{5 \pm \sqrt{1}}{2}$
$=\frac{5 \pm 1}{2}=\frac{5+1}{2}, \frac{5-1}{2}$
अर्थाৎ $x_{1}=3, x_{2}=2$.
উদাহরণ ২। $x^{2}-6 x+9=0$ এর সমাধান কর।
সমাধান : $a x^{2}+b x+c=0$ সমীকরণের সাথে তুলনা করে এক্ষেত্রে পাওয়া যায় $a=1, b=-6$ এবং $c=9$. অতএব সমীকরণঢির সমাধান
$x=\frac{-(-6) \pm \sqrt{(-6)^{2}-4.1 .9}}{2.1}=\frac{6 \pm \sqrt{36-36}}{2}=\frac{6 \pm 0}{2}$
অर्थाৎ $x_{1}=3, x_{2}=3$.

উদাহরণ ৩। সমাধান কর ঃ $x^{2}-2 x-2=0$
সমাধান : আদর্শর্রপ দ্বিঘাত সমীকরণের সাথে তুলনা করে পাওয়া যায়, $a=1, b=-2, c=-2$.

অতএব সমীকরণঢির মূলদ্য
$x=\frac{2 \pm \sqrt{(-2)^{2}-4 \cdot 1 \cdot(-2)}}{2 \cdot 1}=\frac{2 \pm \sqrt{4+8}}{2}=\frac{2 \pm \sqrt{12}}{2}$
বा, $x=\frac{2 \pm 2 \sqrt{3}}{2}=\frac{2(1 \pm \sqrt{3})}{2}$
जर्थाৎ $x_{1}=1+\sqrt{3}, x_{2}=1-\sqrt{3}$.
এখানে লक্ষণীয় যে, সাধারণ নিয়ম্মে মূলদ সংখ্যার সাহায্যে $x^{2}-2 x-1$ কে উৎপাদকে বিশ্রেষণ কর্木া না গেলেও প্রদত্ত সমীকর্ণণটির সমাধান করা সম্ভব হয়েছে।

উদাহরণ 8 । সমাধান কর : $3-4 x-x^{2}=0$
সমাধান : आদর্শ্রপ দ্বিঘাত সমীকরণের সাথে তুলনা করে পাওয়া যায়, $a=-1, b=-4, c=3$.
অতএব সমীকর্ণণটির মূলদ্দ্য

$$
x=\frac{-(-1) \pm \sqrt{(-4)^{2}-4 \cdot(-1) 3}}{2 \cdot(-1)}=\frac{1 \pm \sqrt{16+12}}{-2}=\frac{4 \pm \sqrt{28}}{-2}=\frac{4 \pm 2 \sqrt{7}}{-2}
$$

বा, $x=-(2 \pm \sqrt{7})$
जर्थाৎ $x_{1}=-2-\sqrt{7}, x_{2}=-2+\sqrt{7}$.
 (i) $b=0$, (ii) $c=0$ (iii) $b=c=0$ (iv) $a=1$ এবश (v) $a=1, b=c=2 p$

অनুশীলनी ৫.১

সূত্রের সাহায্যে নিচের সমীকরণণুলোর সমাধান কর ঃ
১। $2 x^{2}+9 x+9=0$
र। $3-4 x-2 x^{2}=0$
७। $4 x-1-x^{2}=0$
8। $2 x^{2}-5 x-1=0$
(\&) $3 x^{2}+7 x+1=0$
৬। $2-3 x^{2}+9 x=0$
१। $x^{2}-8 x+16=0$
৮। $2 x^{2}+7 x-1=0$
ヵ। $7 x-2-3 x^{2}=0$

৫•২। মূল চিহ্ সম্বলিত সমীকরণ

आমরা জানি, চলকের বে মান বা মানখলোর জন্য সমীকরণের উভয় পক্ক সমান হয়, ঐ মান বা মানণলোই সমীকরণের বীজ বা মূল (Root) এবং ঐ মান বা মানچলোর দ্বারা সমীকরণঢি সিদ্ধ হয়।

সমীকর্ণে চলকের বর্গমূল সস্থলিত রাশি থাকলে তাকে বর্গ করে বর্গমূল চিহ্মুক্ত নতুন সমীকরণ পাওয়া যায়। উত্ত সমীকর্ণণ সমাধান করে যে বীজখলো পাওয়া যায় অনেক সময় সবণলো বীজ প্রদত্ত সমীকরণণঢিকে সিদ্ধ করে না। এ
 প্রদত্ত সমীকরণের বীজ কি না তা অবশ্যই পরীীকা করে দেখা দরকার। পর্রীक্মার পর যে সব বীজ উক্ত সমীকরণরে সিদ্ধ করে তাই হবে প্রদত সমীকর্রণের বীজ। নিচে কয়েকটি উদাহরণ দেওয়া হলো।

উদাহর্র ১। সমাধান কর : $\sqrt{8 x+9}-\sqrt{2 x+15}=\sqrt{2 x-6}$
সমাধান : $\sqrt{8 x+9}-\sqrt{2 x+15}=\sqrt{2 x-6}$
বा, $\sqrt{2 x+15}+\sqrt{2 x-6}=\sqrt{8 x+9}$
বा, $2 x+15+2 x-6+2 \sqrt{2 x+15} \sqrt{2 x-6}=8 x+9$ [বর্গ করে]
বा, $\sqrt{2 x+15} \sqrt{2 x-6}=2 x$
বা, $(2 x+15)(2 x-6)=4 x^{2}$ [পুনরায় বর্গ করে]
বा, $4 x^{2}+18 x-90=4 x^{2}$
বা, $18 x=90$
$\therefore x=5$
Жुদ্ধি পরীক্ষা : $x=5$ হলে, বামপক্ষ $=\sqrt{49}-\sqrt{25}=7-5=2$ এবং ডানপক্ষ $=\sqrt{4}=2$
\therefore निर्ণেয় সমাধান $x=5$.
উদাহর্রণ ২। সমাধান কর : $\sqrt{2 x+8}-2 \sqrt{x+5}+2=0$
সমাধান : $\sqrt{2 x+8}=2 \sqrt{x+5}-2$
বा, $2 x+8=4(x+5)+4-8 \sqrt{x+5}$ [বর্গ করে]
বা, $8 \sqrt{x+5}=4 x+20+4-2 x-8$ [পক্ষান্তর করে]
বा, $8 \sqrt{x+5}=2 x+16=2(x+8)$
বा, $4 \sqrt{x+5}=x+8$
বা, $16(x+5)=x^{2}+16 x+64$ [বর্গ করে]
বा, $16=x^{2}$
$\therefore x= \pm \sqrt{16}= \pm 4$
چদ্ধি পরীक্ষা : $x=4$ হলে, বামপक্ম $=\sqrt{16}-2 \sqrt{9}+2=4-2 \times 3+2=0=$ ডानপক্ষ $x=-4$ হলে, বামপক্ষ $=\sqrt{-8+8}-2 \sqrt{-4+5}+2=0-2 \times 1+2=0=$ ডানপক্ষ
\therefore निर्ণেয় সমাধান $\mathrm{x}=4,-4$.
উদাহর্নণ ৩। সমাধান কর : $\sqrt{2 x+9}-\sqrt{x-4}=\sqrt{x+1}$
সমাধাन : $\sqrt{2 x+9}-\sqrt{x-4}=\sqrt{x+1}$
বা, $2 x+9+x-4-2 \sqrt{(2 x+9)(x+4)}=x+1$ [বর্গ করে]

বा, $2 \sqrt{2 x^{2}+x-36}=2 x+4$
বा, $\sqrt{2 x^{2}+x-36}=x+2$
বা, $2 x^{2}+x-36=x^{2}+4 x+4$ [বর্গ করে]
বा, $x^{2}-3 x-40=0$
বा, $(x-8)(x+5)=0$
$\therefore x=8$ অথবা -5
жদ্ধি পরীক্ষা : $x=8$ হলে, বামপক্ষ $=5-2=3$ এবং ডানপক্ষ $=3$
অতএব, $x=8$ প্রদত্ত সমীকরণের একটি বীজ।
$x=-5$ গ্রহণযোগ্য নয়, কেননা সমীকরণে $x=-5$ বসালে ঋণাত্মক সংখ্যার বর্গমূল আসে যা সংজ্ঞায়ি
\therefore निर्ণেয় সমাধান $x=8$
উদাহর্রণ 8 । সমাধান কর : $\sqrt{(x-1)(x-2)}+\sqrt{(x-3)(x-4)}=\sqrt{2}$
সমাধান : $\sqrt{(x-1)(x-2)}+\sqrt{(x-3)(x-4)}=\sqrt{2}$
বा, $\sqrt{x^{2}-3 x+2}-\sqrt{2}=-\sqrt{x^{2}-7 x+12}$
বा, $x^{2}-3 x+2-2 \sqrt{2} \sqrt{x^{2}-3 x+2}+2=x^{2}-7 x+12$ [বর্গ করে]
বा, $\sqrt{2 x^{2}-6 x+4}=2 x-4$
বা, $2 x^{2}-6 x+4=(2 x-4)^{2}=4 x^{2}-16 x+16$ [বর্গ করে]
বा, $x^{2}-5 x+6=0$
বा, $(x-2)(x-3)=0$
$\therefore x=2$ অथবा $x=3$.
Жদ্ধি পরীক্ষা : $x=2$ হলে বামপক্ষ $=\sqrt{2}=ড া ন প ক ্ ষ ~$
$x=3$ হলে, বামপক্ষ $=\sqrt{2}=$ ডানপক্ষ
\therefore निर्बেয় সমাধান $x=2,3$

উদাহর্রণ ৫। সমাধান কর : $\sqrt{x^{2}-6 x+15}-\sqrt{x^{2}-6 x+13}=\sqrt{10}-\sqrt{8}$
সমাধান : $\sqrt{x^{2}-6 x+15}-\sqrt{x^{2}-6 x+13}=\sqrt{10}-\sqrt{8}$
এখন $x^{2}-6 x+13=y$ ধরলে প্রদত্ত সমীকরণ হবে
$\sqrt{y+2}-\sqrt{y}=\sqrt{10}-\sqrt{8}$
বा, $\sqrt{y+2}+\sqrt{8}=\sqrt{y}+\sqrt{10}$
বा, $y+2+8+2 \sqrt{8 y+16}=y+10+2 \sqrt{10 y}$ [বর্গ করে]
বा, $\sqrt{8 y+16}=\sqrt{10 y}$

বা, $8 y+16=10 y$ [বর্গ করে]
বा, $2 y=16$ বा, $y=8$
বा, $x^{2}-6 x+13=8$ [y এর মান বসিয়ে]
বा, $x^{2}-6 x+5=0$ বा, $(x-1)(x-5)=0$
$\therefore x=1$ অथবा 5 .
พদ্ধি পরীক্ষা : $x=1$ হলে, বামপक्ष $=\sqrt{10}-\sqrt{8}=$ ডानপক্ষ
$x=5$ रলে, বামপক্ষ $=\sqrt{10}-\sqrt{8}=$ ডানপক্ষ
\therefore निर्ণেয় সমাধাन $x=1,5$
উদাহর্নণ ৬। সমাধান কর : $(1+x)^{\frac{1}{3}}+(1-x)^{\frac{1}{3}}=2^{\frac{1}{3}}$
সমাধান : $(1+x)^{\frac{1}{3}}+(1-x)^{\frac{1}{3}}=2^{\frac{1}{3}}$
$\Rightarrow 1+x+1-x+3(1+x)^{\frac{1}{3}}(1-x)^{\frac{1}{3}}\left\{(1+x)^{\frac{1}{3}}+(1-x)^{\frac{1}{3}}\right\}=2$ [घन করে]
বा, $2+3(1+x)^{\frac{1}{3}}(1-x)^{\frac{1}{3}} 2^{\frac{1}{3}}=2$
বा, $3.2^{\frac{1}{3}}(1+x)^{\frac{1}{3}} \cdot(1-x)^{\frac{1}{3}}=0$
বा, $(1+x)^{\frac{1}{3}}(1-x)^{\frac{1}{3}}=0$
বা, $(1+x)(1-x)=0$ [আবার ঘন করে]
$x=1$ এবং $x=-1$ উভয়ই সমীকরণটিকে সিদ্ধ করে।
\therefore निर्ণেয় সমাধান $x= \pm 1$

অনুশীলনী ৫.২

সমাধান কর্ন :

১। $\sqrt{x-4}+2=\sqrt{x+12}$
२। $\sqrt{11 x-6}=\sqrt{4 x+5}-\sqrt{x-1}$
৩। $\sqrt{2 x+7}+\sqrt{3 x-18}=\sqrt{7 x+1}$
8। $\sqrt{x+4}+\sqrt{x+11}=\sqrt{8 x+9}$
१। $\sqrt{x^{2}-6 x+9}-\sqrt{x^{2}-6 x+6}=1$
©। $\sqrt{11 x-6}=\sqrt{4 x+5}+\sqrt{x-1}$
৬। $\sqrt{x^{2}+4 x-4}+\sqrt{x^{2}+4 x-10}=6$
b- $\sqrt{2 x^{2}+5 x-2}-\sqrt{2 x^{2}+5 x-9}=1$
৯। $\quad 6 \sqrt{\left(\frac{2 x}{x-1}\right)}+5 \sqrt{\left(\frac{x-1}{2 x}\right)}=13$
১०। $\sqrt{\left(\frac{x-1}{3 x+2}\right)}+2 \sqrt{\left(\frac{3 x+2}{x-1}\right)}=3$

৫•৩ সূচক সমীকরণ (Indicial Equation)

যে সমীকরণে অজ্ঞাত চলক সূচকক্గপে থাকে, তাকে সূচক সমীকরণ বলে।
$2^{x}=8,16^{x}=4^{x+2} \cdot 2^{x+1}-2^{x}-8=0$ ইত্যাদি সমীকরণগুলো সূচক সমীকরণ যেখানে x অজ্ঞাত চলক। সূচক সমীকরণ সমাধান করতে সূচকের নিম্নলিথিত ধর্মটি প্রায়ই ব্যবহার করা হয়ঃ
$a \neq 1$ হলে $a^{x}=a^{m}$ হবে यদি ও কেবল যদি $x=m$ হয়। এ জন্য প্রথমে সমীকরণের উভয় পক্ষকে সংখ্যার ঘাত বা শক্তির্রূপে প্রকাশ করা হয় :

কাজ: ১। 4096 কে $\frac{1}{2}, 2,4,8,16,2 \sqrt{2}, \sqrt[3]{4}$ এর সৃচকে প্রকাশ কর।
২। 729 কে $3,9,27,16, \sqrt[5]{9}$ এর সৃচढে লিখ।
৩। $\frac{64}{729}$ কে $\frac{3}{2}, \sqrt[3]{\frac{3}{2}}$ এর সূচকে প্রকাশ কর।

উদাহর্রণ ১ । সমাধান কর ঃ $2^{x+7}=4^{x+2}$
সমাধান : $2^{x+7}=4^{x+2}$
বा, $2^{x+7}=\left(2^{2}\right)^{x+2}$
বा, $2^{x+7}=2^{2 x+4}$
$\therefore x+7=2 x+4$
বা, $x=3$
\therefore निर्ণেয় সমাধান, $x=3$.

উদাহর্রণ ২ । সমাধান কর ঃ $3.27^{x}=9^{x+4}$
সমাধান ঃ $3.27^{x}=9^{x+4}$
বा, 3. $\left(3^{3}\right)^{x}=\left(3^{2}\right)^{x+4}$
বा, $3.3^{3 x}=3^{2(x+4)}$
বा, $3^{3 x+1}=3^{2 x+8}$
$\therefore 3 x+1=2 x+8$
বা, $x=7$
\therefore निर्ণেয় সমাধাन $x=7$

উদাহরণ ৩। সমাধান কর : $3^{m x-1}=3 a^{m x-2},(a>0, a \neq 3, m \neq 0)$
সমাধান : $3^{m x-1}=3 a^{m x-2}$
বা, $\frac{3^{m x-1}}{3}=a^{m x-2}$ [উভয় পক্ষকে 3 দ্বারা ভাগ করে]
বा, $3^{m x-2}=a^{m x-2}$
বा, $\left(\frac{a}{3}\right)^{m x x-2}=1=\left(\frac{a}{3}\right)^{0}$
বা, $m x-2=0$
বা, $m x=2$
বা, $x=\frac{2}{m}$
\therefore निर्ণেয় সমাধাन $x=\frac{2}{m}$
উদাহর্নণ 8 । সমাধান কর : $2^{3 x-5} \cdot a^{x-2}=2^{x-3} \cdot 2 a^{1-x},\left(a>0\right.$ এবং $\left.a \neq \frac{1}{2}\right)$
সমাধান : $2^{3 x-5} \cdot a^{x-2}=2^{x-3} \cdot 2 a^{1-x}$
বा, $\frac{a^{x-2}}{a^{1-x}}=\frac{2^{x-3} \cdot 2^{1}}{2^{3 x-5}} \quad$ বा, $a^{x-2-1+x}=2^{x-3+1-3 x+5}$
বा, $a^{2 x-3}=2^{-2 x+3} \quad$ বा, $a^{2 x-3}=2^{-(2 x-3)}$
বा, $a^{2 x-3}=\frac{1}{2^{2 x-3}} \quad$ বा, $a^{2 x-3} \cdot 2^{2 x-3}=1$
বा, $(2 a)^{2 x-3}=1=(2 a)^{0}$
$\therefore 2 x-3=0 \quad$ বा, $2 x=3 \quad$ বा, $x=\frac{3}{2}$
\therefore निर्ণেয় সমাধাन $x=\frac{3}{2}$
উদাহরণ ৫। সমাধান কর ঃ $a^{-x}\left(a^{x}+b^{-x}\right)=\frac{a^{2} b^{2}+1}{a^{2} b^{2}},(a>0, b>0$ এবং $a b \neq 1)$
সমাধান ः $a^{-x}\left(a^{x}+b^{-x}\right)=1+\frac{1}{a^{2} b^{2}}$
বा, $a^{-x} \cdot a^{x}+a^{-x} \cdot b^{-x}=1+\frac{1}{a^{2} b^{2}}$
বा, $1+(a b)^{-x}=1+(a b)^{-2}$
বा, $(a b)^{-x}=(a b)^{-2}$
$\therefore-x=-2$
অर्थाৎ, $x=2$
\therefore निर्ণেয় সমাধান $x=2$
উদাহর্নণ ৬। সমাধান কর ঃ $3^{x+5}=3^{x+3}+\frac{8}{3}$
সমाधान ः $3^{x+5}=3^{x+3}+\frac{8}{3}$
বा, $3^{x} \cdot 3^{5}=3^{x} 3^{3}+\frac{8}{3}$
বা, $3^{x} \cdot 3^{6}-3^{x} \cdot 3^{4}=8$ [পক্ষান্তর এবং উভয় পক্ষে 3 দ্বারা গুণ করে]
বा, $3^{x} \cdot 3^{4}\left(3^{2}-1\right)=8$
বा, $3^{x+4} .8=8$
বा, $3^{x+4}=1=3^{0}$
$\therefore x+4=0$ বा, $x=-4$
\therefore निर्ণেয় সমাধান $x=-4$
উদাহরণ ৭। সমাধান কর ঃ $3^{2 x-2}-5.3^{x-2}-66=0$
সমাধান ঃ $3^{2 x-2}-5.3^{x-2}-66=0$
বा, $\frac{3^{2 x}}{9}-\frac{5}{9} \cdot 3^{x}-66=0$
বা, $3^{2 x}-5.3^{x}-594=0$ [উভয় পক্ষে 9 দ্বারা ঞুণ করে]
বা, $a^{2}-5 a-594=0 \quad\left(3^{x}=a\right.$ ধরে $)$
বा, $a^{2}-27 a+22 a-594=0$
বा, $(a-27)(a+22)=0$
এখন $a \neq-22$, কেননা $a=3^{x}>0$ সুতরাং $a+22 \neq 0$
অতএব, $a-27=0$
বा, $3^{x}=27=3^{3}$
$\therefore x=3$
निर्ণেয় সমাধান $x=3$
উদাহরণ ৮ । সমাধান কর ঃ $a^{2 x}-\left(a^{3}+a\right) a^{x-1}+a^{2}=0(a>0, a \neq 1)$
সমাধান ঃ $a^{2 x}-\left(a^{3}+a\right) a^{x-1}+a^{2}=0$
বा, $a^{2 x}-a\left(a^{2}+1\right) a^{x} \cdot a^{-1}+a^{2}=0$
বा, $a^{2 x}-\left(a^{2}+1\right) a^{x}+a^{2}=0$
বा, $p^{2}-\left(a^{2}+1\right) p+a^{2}=0 \quad\left(a^{x}=p\right.$ ধরে $)$
বा, $p^{2}-a^{2} p-p+a^{2}=0$
বा, $(p-1)\left(p-a^{2}\right)=0$
$\therefore p=1 \quad$ অথবा $p=a^{2}$
বा, $a^{x}=1=a^{0}$ বा $a^{x}=a^{2}$
$\therefore x=0 \quad \therefore x=2$
\therefore निर्ণেয় সমাধাन $x=0,2$

অনুশীলনী ৫-৩

সমাধান কর্ :

১। $3^{x+2}=81$
र। $\quad 5^{3 x-7}=3^{3 x-7}$

१। $\frac{5^{3 x-5} \cdot b^{2 x-6}}{5^{x+1}}=a^{2 x-6}(a>0, b>0,5 b \neq a)$
৮। $\quad 4^{x+2}=2^{2 x+1}+14$

या, $(x-y)(x+2)=0 \therefore x=y$
বा, $x=-2 \quad$ (iv)
(iii) ও (i) থেকে আমরা পাই, $y^{2}=9 y$ বा, $y(y-9)=0 \therefore y=0$ অথবা 9
(iii) থেকে, যখন $y=0$ তখन $x=0$ এবং যখन $y=9$, তখन $x=9$

আমরা (iv) ও (i) থেকে আমরা পাই, $\mathrm{x}=-2$ এবং $4=-6+6 \mathrm{y}$ বा, $6 \mathrm{y}=10$ বा, $y=\frac{5}{3}$
\therefore निर्ণেয় সমাधान $(x, y)=(0,0)(9,9)\left(-2, \frac{5}{3}\right)$
উদাহর্রণ ৩। সমাধাन কর : $x^{2}+y^{2}=61, x y=-30$
সমাধান : $x^{2}+y^{2}=61$
(i) $x y=-30$
(ii)
(ii) কে 2 দ্बाরা ऊুণ করে (i) থেকে বিয়োগ কর্নে আমরা পাই, $(x-y)^{2}=121$
(iii)

বा, $x-y= \pm 11$
(iii) ও (iv) থেকে,
$\left.\begin{array}{c}x+y=1 \\ x-y=11\end{array}\right\}$ (v) $\left.\begin{array}{c}x+y=1 \\ x-y=-11\end{array}\right\}$ (vi), $\left.\begin{array}{c}x+y=-1 \\ x-y=11\end{array}\right\}$ (vii), $\left.\begin{array}{c}x+y=-1 \\ x-y=-11\end{array}\right\}$ (viii)
সমাধান করে পাই,
(v) থেকে, $x=6, y=-5$;
(vi) থেকে $x=-5, y=6$
(vii) থেকে, $x=5, y=-6$
(viii) থেকে, $x=-6, y=5$
\therefore निर्ণ̛ऱ সমাধাन $(x, y)=(6,-5)(-5,6)(5,-6)(-6,5)$
উদাহর্রণ 8 । সমাধাन কর ঃ $x^{2}-2 x y+8 y^{2}=8,3 x y-2 y^{2}=4$
সमाधानः ः $x^{2}-2 x y+8 y^{2}=8$, (i) $3 x y-2 y^{2}=4$
(i) এবং (ii) থেকে আমরা পাই,

$$
\frac{x^{2}-2 x y+8 y^{2}}{3 x y-2 y^{2}}=\frac{2}{1} \text { বा, } x^{2}-2 x y+8 y^{2}=6 x y-4 y^{2}
$$

বा, $x^{2}-8 x y+12 y^{2}=0$
বा, $x^{2}-6 x y+2 x y+12 y^{2}=0$
বा, $(x-6 y)(x-2 y)=0 \therefore x=6 y \quad$ (iii) অথবा $x=2 y$
(iii) থেকে, x এর মান (ii) এ বসিয়ে আমরা পাই,
3.6y. $y-2 y^{2}=4$ बा, $16 y^{2}=4$ বा, $y^{2}=\frac{1}{4}$ বा, $y= \pm \frac{1}{2}$
(iii) থেকে, $x=6 \times\left(\pm \frac{1}{2}\right)= \pm 3$.

আবার (iv) থেকে x এর মান (ii) এ বসিয়ে আমরা পাই,
$3.2 y \cdot y-2 y^{2}=4$
বा, $4 y^{2}=4$
বा, $y^{2}=1$
বा, $y= \pm 1$
(iv) থেকে $x=2 \times(\pm 1)= \pm 2$
\therefore निर्ণেয় সমাধাन $(x, y)=\left(3, \frac{1}{2}\right),\left(-3,-\frac{1}{2}\right)(2,1)(-2,-1)$
উদাহর্নণ ৫। সমাধান কর ঃ $\frac{x+y}{x-y}+\frac{x-y}{x+y}=\frac{5}{2}, x^{2}+y^{2}=90$
সমাধান ঃ $\frac{x+y}{x-y}+\frac{x-y}{x+y}=\frac{5}{2}$
(i) $x^{2}+y^{2}=90$ (ii)
(i) থেকে আমরা পাই,
$\frac{(x+y)^{2}+(x-y)^{2}}{(x+y)(x-y)}=\frac{5}{2}$
বा, $\frac{2\left(x^{2}+y^{2}\right)}{x^{2}-y^{2}}=\frac{5}{2}$
$\therefore \frac{2 \times 90}{x^{2}-y^{2}}=\frac{5}{2}$ [(ii) থেকে $x^{2}+y^{2}=90$ बসিয়ে]
বा, $x^{2}-y^{2}=72$
(iii)
(ii)+(iii) निलে, $2 x^{2}=162$ বा, $x^{2}=81$ বा, $x= \pm 9$

এবং (ii)-(iii) निলে, $2 y^{2}=18$ বा, $y^{2}=9$ বा, $y= \pm 3$
\therefore निर्ণেয় সমাধাन $(x, y)=(9,3),(9,-3),(-9,3),(-9,-3)$

কাজ:

উদাহরণ ২ এবং ৩ এর সমাধান বিকল্প পদ্ধতিতে নির্ণয় কর।

অनুশীলনী ৫•8

সমাধান কর্ন ঃ

ว। $(2 x+3)(y-1)=14,(x-3)(y-2)=-1$
१। $x y-x^{2}=1, y^{2}-x y=2$
२। $(x-2)(y-1)=3,(x+2)(2 y-5)=15$
৮- । $x^{2}-x y=14, y^{2}+x y=60$
৩। $x^{2}=7 x+6 y, y^{2}=7 y+6 x$
৯। $x^{2}+y^{2}=25, x y=12$
8। $x^{2}=73 x+2 y, y^{2}=3 y+2 x$
৫। $x+\frac{4}{y}=1, y+\frac{4}{x}=25$
১०। $\frac{x+y}{x-y}+\frac{x-y}{x+y}=\frac{10}{3}, x^{2}-y^{2}=3$

৬। $y+3=\frac{4}{x}, x-4=\frac{5}{3 y}$
১S। $x^{2}+x y+y^{2}=3, x^{2}-x y+y^{2}=7$
১২। $2 x^{2}+3 x y+y^{2}=20,5 x^{2}+4 y^{2}=41$

৫.৫ দ্বিঘাত সহসমীকরণের ব্যবহার

সহসমীকরণেের ধারনা ব্যবহার করে দৈনন্দিন জীবনের বহু সমস্যার সমাধান করা যায়। অনেক সময় সমস্যায় দুইটি অঞ্জাত রাশির মান নির্ণয় করতে হয়। সেক্ষেত্রে অজ্ঞাত রাশি দুইটির মান x এবং y বা অন্য যেকোন দুইটি স্বতন্ত্র প্রতীক ধরতে হয়। তারপর সমস্যার শর্ত বা শর্তঞ্ডলো থেকে পরস্পর অনির্ভর, সন্গতপপূর্ণ সমীকরণ গঠন করে সমীকরণ জোটের সমাধান করলেই x এবং y অজ্ঞাত রাশিকুলোর মান নির্ণয় করা যায়।

উদাহরণ ১। দুইটি বর্গক্ষেত্রের ক্ষেত্রফলের সমষ্টি 650 বর্গমিটার। ঐ দুইটি বর্গক্ষেত্রের দুই বাহ দ্বারা গঠিত আয়তক্ষেত্রের ক্ষেত্রফল 323 বর্গমিটার হলে, বর্গক্ষেত্র দুইটির প্রত্যেক বাহুর পরিমান কত?
সমাধান : মনে করি, একটি বর্গক্ষেত্রের বাহুর পরিমাণ x মিটার এবং অপরটির বাহুর পরিমাণ y মিটার।
প্রশ্নমতে, $x^{2}+y^{2}=650$
এবং $x y=323$ \qquad
$\therefore(x+y)^{2}=x^{2}+y^{2}+2 x y=650+646=1296$
অर्थाৎ $(x+y)= \pm \sqrt{1296}= \pm 36$
এবং $(x-y)^{2}=x^{2}+y^{2}-2 x y=650-646=4$
অর্থাৎ $(x-y)= \pm 2$
যেহেতু দৈর্ঘ্য ধনাত্যক, সেহেতু $(x+y)$ এর মান ধনাত্যক হতে হবে।
$\therefore(x+y)=36$ \qquad
$(x-y)= \pm 2$.
যোগ করে, $2 x=36 \pm 2$
$\therefore x=\frac{36 \pm 2}{2}=18 \pm 1=19$ বা, 17
সমীকরণ (iii) থেকে পাই, $y=36-x=17$ বা, 19.
\therefore একটি বর্গক্ষেত্রের বাহুর পরিমাণ 19 মিটার এবং অপর বর্গক্ষেত্রের বাহুর পরিমাণ 17 মিট|র।

উদাহর্রণ ২। একটি আয়তক্ষেত্রের দৈর্ঘ্য তার প্রস্থের দ্বিক্ধণ অপেক্ষা 10 মিট|র কম। আয়তক্ষেত্রের ক্ষেত্রফল 600 বর্গমিটার হলে, এর দৈর্ঘ্য নির্ণয় কর।
সমাধান : মনে করি, আয়তক্ষেত্রের দৈর্ঘ্য=x মিটার এবং আয়তক্ষেত্রের প্রস্থ $=y$ মিটার
প্রশ্নমতে, $2 y=x+10$
$x y=600$
সমীকরণ (i) থেকে পাই, $y=\frac{10+x}{2}$
সমীকরণ (ii) এ y এর মান বসিয়ে পাই, $\frac{x(10+x)}{2}=600$
বा, $\frac{10 x+x^{2}}{2}=600$ বा, $x^{2}+10 x=1200$
বा, $x^{2}+10 x-1200=0$ বा, $(x+40)(x-30)=0$
সুতরাং, $(x+40)=0$
অथবা $(x-30)=0$
অर्থाৎ, $x=-40$ বा, $x=30$

কিন্ট টৈর্ঘ্য ঋণাত্যক হতে পারে না,
$\therefore x=30$
\therefore आয়তক্কেত্রের দৈর্ঘ্য $=30$ মিটার।
উদাহরণ ৩। দুই অক্কবিশিষ্ট একটি সং্যাাকে অক্কদ্রয়ের শুণফল দ্বারা ভাগ করলেলে ভাগফল হয় 3. সং্খ্যাঢির সাথে 18 যোগ করলে অক্কদ্বয় স্থান বিনিময় করে। সংখ্যাঢি নির্ণয় কর।
সমাখান ঃ মনে করি, দশক স্থানীয় অन्क $=x$ এবং একক স্থানীয় অ尺्क y
\therefore সश्थाणि $=10 x+y$
প্রথম শর্তানুসারে , $\frac{10 x+y}{x y}=3$ বा, $10 x+y=3 x y$
দ্দিতীয় শर्তनूসারে, $10 x+y+18=10 y+x$ বा, $9 x-9 y+18=0$
বा, $x-y+2=0$ বा, $y=x+2$.
সমীকরণ (i) এ $y=x+2$ বসिয়ে পাই, $10 x+x+2=3 \cdot x(x+2)$
বा, $11 x+2=3 \cdot x^{2}+6 x$
বा, $3 x^{2}-5 x-2=0 \quad$ बा, $3 x^{2}-6 x+x-2=0$
বा, $3 x(x-2)+1(x-2)=0$
বा, $(x-2)(3 x+1)=0$
সুতরাং $(x-2)=0$ অথবा $(3 x+1)=0$ বा, $3 x=-1$
অर्थाৎ, $x=2$ बा, $x=-\frac{1}{3}$
কিন্ভু সং্থ্যার অন্巾 ঋণাত্দক বা ভগ্নাংশ হতে পারে না।
সুতরাং $x=2$ এবং $y=x+2=2+2=4$
\therefore সश्यापि 24

প্রশ্নমালা ৫•৫

১। দুইটি বর্গক্ষেত্রের ক্শেত্রফলের সমষ্টি 481 বর্গমিটার। ঐ দুইটি বর্গক্ষেত্রের দুই বাহ দ্বারা গঠিত আয়তক্কেত্রের ক্চেত্রফল 240 বর্গমিটার হলে, বর্গক্চেত্র দুইটির প্রত্যেক বাহ্ন পর্নিমাণ কত?

২। দুইটি ধনাত্রক সংখ্যার বর্গের সমষ্টি 250। সংখ্যা দুইটির কুণফল্न 117, সংখ্যা দুইটি নির্ণয় কর ।
৩। একটি আয়তক্কেত্রের কর্ণের দৈর্ঘ্য 10 মিটার । ইহার বাহूদ্যের যোগফল ও বিয়োগফলেলর সমান দৈর্ঘ্য বিশিষষ বাহ্দ্য় দ্মারা অক্कিত আয়্রক্ষেত্রের ক্কের্রফন 28 বর্গমিটার হলে, প্রথম আয়তক্কেত্রটির দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।

8। দুইটি সংখ্যার বর্গের সমষ্ঠি 181 এবং সংথ্যা দুইটির ఆুণফল 90 , সংখ্থা দুইটির বর্গের অন্তর নির্ণয় কর ।
৫। একটি আয়তক্ষেত্রের ক্কের্রফল 24 বর্গমিটার। অপর একটি আয়তত্ষেত্রের দৈর্ঘ্য ও প্রস্থ প্রথম আয়তক্কেত্রের দৈর্ঘ্য ও প্রস্থ অপেক্ষা যথাক্রমে 4 মিটার এবং 1 মিটার বেশি এবং ক্ষেত্রফল 50 বর্গমিটার। প্রথম আয়তক্ষেত্রের দৈর্য্য ও প্রস্থ নির্ণয় কর।

৬। একটি আয়তক্ষেত্রের প্রস্থের দ্ভিণ দৈর্ঘ্য অপেক্ষা 23 মিটার বেশি। আয়তক্কেত্রের ক্ষেত্রফল 600 বর্গমিটার হলে, তার দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।

१। একটি আয়তক্কেত্রের পর্রিসীমা কর্ণঘ্ময়ের দৈর্ঘ্যের সমষ্টি অপেক্মা 8 মিটার বেশি। ক্ষেত্রেটির ক্শেফ্রফन 48 বর্গমিটার হলে, তার দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।
 27 যোপ করলে অক্কদ্যয় স্থান বিনিময় করে। সংখ্যাটি নির্ণয় কর।

৯। একটি আয়তকার বাগানের পরিসীমা 56 মিটার এবং কর্ণ 20 মিটার। ঐ বাগানের সমান ক্ষেত্রফল্নবিশিষ্৪ বর্গক্কেত্রের এক বাহ্ন দৈর্ঘ্য কত ?

১০। একটি আয়্রক্ষেত্রের ক্ষেক্রফল 300 বর্গমিটার এবং এর অর্ধপরিসীমা একটি কর্ণ অপেক্ষা 10 মিটার বেশি। ক্চেত্রির্র দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।

৫•৬। দুই চলকবিশিষ্ট সূচক সমীকরণ জোট

পূর্ববর্তী অধ্যায়ে এক চলকবিশিষ্৪ সূচক সমীকরণেের সমাধান নির্ণ্য় সম্পর্কে আলোচন্ন করা হয়েছে। দুই চলকবিশিষ্ঠ সূচীীয় সমীকরণ জোটের সমাধান নির্ণয় কর্যা সম্পর্কে এখানে আলোচনা করা হলো।

উদাহরণ >। সমাধাन কর : $a^{x+2} \cdot a^{2 y+1}=a^{10}, \quad a^{2 x} \cdot a^{y+1}=a^{9}(a \neq 1)$
সमाधान : $a^{x+2} \cdot a^{2 y+1}=a^{10}$
(i)
$a^{2 x} \cdot a^{y+1}=a^{9}$
(ii)
(i) থেকে $a^{x+2 y+3}=a^{10} \quad$ বा, $x+2 y+3=10 \quad$ বा, $x+2 y-7=0 \quad$ (iii)
(ii) থেকে, $a^{2 x+y+1}=a^{9} \quad$ বा, $2 x+y+1=9 \quad$ বा, $2 x+y-8=0 \quad$ (iv)
(iii) ও (iv) থেকে বভ্রৃ্ণণন পদ্ধতি অনুসারে,
$\frac{x}{-16+7}=\frac{y}{-14+8}=\frac{1}{1-4}$
বा, $\frac{x}{-9}=\frac{y}{-6}=\frac{1}{-3}$
বा, $\frac{x}{3}=\frac{y}{2}=1$
বा, $x=3, y=2$
\therefore निर्ণেয় সমাধাन $(x, y)=(3,2)$
উদাহর্রণ ২। সমাধান কর : $3^{3 y-1}=9^{x+y}, 4^{x+3 y}=16^{2 x+3}$
সমাধাन : $3^{3 y-1}=9^{x+y} \quad$ (i)
বा, $3^{3 y-1}=\left(3^{2}\right)^{x+y}=3^{2 x+2 y}$
$\therefore 3 y-1=2 x+2 y$

বा, $2 x-y+1=0$
$4^{x+3 y}=16^{2 x+3}$
(ii)

বा, $4^{x+3 y}=\left(4^{2}\right)^{2 x+3}$ বा, $4^{x+3 y}=4^{4 x+6}$
বा, $x+3 y=4 x+6$ বा, $3 x-3 y+6=0$
বা, $x-y+2=0$ (iv)
(iii) ও (iv) থেকে বজ্রণ্ৰণন পদ্ধতি অনুসারে,
$\frac{x}{-2+1}=\frac{y}{1-4}=\frac{1}{-2+1}$
বा, $\frac{x}{-1}=\frac{y}{-3}=-1$
বा, $x=1, y=3$
\therefore निर्ণেয় সমাধাन $(x, y)=(1,3)$
উদাহর্রণ ৩। সমাধান কর : $x^{y}=y^{x}, x=2 y$
সমাধান : $x^{y}=y^{x}$
(i) $x=2 y$
(ii) এখানে $x \neq 0, y \neq 0$
(ii) থেকে X এর মান (i) এ বসিয়ে পাই, $(2 y)^{y}=y^{2 y}$ বা, $2^{y} \cdot y^{y}=y^{2 y}$

বा, $\frac{y^{2 y}}{y^{y}}=2^{y}$ बा, $y^{y}=2^{y} \quad \therefore y=2 \quad$ (ii) थেকে, $x=4$
\therefore निर्बেয় সমাধান $(x, y)=(4,2)$
উদাহরণ 8। সমাধান কর : $x^{y}=y^{2}, y^{2 y}=x^{4}$, যেখানে $x \neq 1$
সমাधान : $x^{y}=y^{2}$
(i), $\quad y^{2 y}=x^{4}$
(i) থেকে পাই,

$$
\begin{equation*}
\left(x^{y}\right)=\left(y^{2}\right)^{\prime} \quad \text { বा, } x^{y^{2}}=y^{2 y} \tag{iii}
\end{equation*}
$$

(iii) ও (ii) থেকে পাই, $x^{y^{2}}=x^{4}$
$\therefore y^{2}=4$ বा, $y= \pm 2$
এখन $y=2$ হলে (i) থেকে পাই, $x^{2}=2^{2}=4$ বा, $x= \pm 2$
আবার, $y=-2$ হলে, (i) থেকে পাই, $(x)^{-2}=(-2)^{2}=4$
বा, $\frac{1}{x^{2}}=4$ বा, $x^{2}=\frac{1}{4}$ বा, $x= \pm \frac{1}{2}$
\therefore निर्ণেয় সমাধान $(x, y)=(2,2)(-2,2),\left(\frac{1}{2},-2\right),\left(-\frac{1}{2},-2\right)$

উमाइत्रণ \&। সমাধাन कর : $8.2^{x y}=4^{y}, \quad 9^{x} \cdot 3^{x y}=\frac{1}{27}$
সমाधान : $8.2^{x y}=4^{y}$
(i) $\quad 9^{x} \cdot 3^{x y}=\frac{1}{27}$
(i) থেকে পাই, $2^{3} \cdot 2^{x y}=\left(2^{2}\right)$ বा, $2^{3+x y}=2^{2 y} \quad \therefore 3+x y=2 y$
(ii) থেকে পাই, $\left(3^{2}\right) \cdot 3^{x y}=\frac{1}{3^{3}}$ বा, $3^{2 x+x y}=3^{-3} \quad \therefore 2 x+x y=-3$
(iii) থেকে (iv) বিয়োগ করে পাই, $3-2 x=2 y+3$ বा, $-x=y$
(v) থেকে y এর মান (iii) এ বসিয়ে পাই, $3-x^{2}=-2 x$

বा, $x^{2}-2 x-3=0$ या, $(x+1)(x-3)=0$
$\therefore x=-1$ जথবा $x=3$
$x=-1$ হলে (v) থেকে পাই, $y=1 ; x=3$ হলে (v) থেকে পাই, $y=-3$
\therefore निर्ণেয় সমাধাन $(x, y)=(-1,1)(3,-3)$
উদাহর্রণ ৬। সমাধাन কর : $18 y^{x}-y^{2 x}=81,3^{x}=y^{2}$
সমाधान : $18 y^{x}-y^{2 x}=81$,
(i) $3^{x}=y^{2}$
(i) থেকে পাই, $y^{2 x}-18 y^{x}+81=0$ বा, $\left(y^{x}-9\right)^{2}=0$
বा, $y^{x}-9=0 \quad$ বा, $y^{x}=3^{2}$ (iii)
(ii) থেকে পাই, $\left(3^{x}\right)=\left(y^{2}\right)$ বा, $3^{x^{2}}=y^{2 x}$ (iv)
(iii) থেকে পাই, $(y x)^{2}=\left(3^{2}\right)^{2} \quad$ বा, $y^{2 x}=3^{4}$
(iv) ও (v) থেকে পাই, $3^{x^{2}}=3^{4} \quad \therefore x^{2}=4$ बा, $x= \pm 2$
$x=2$ रলে (ii) থেকে পাই, $y^{2}=9$ বा, $y= \pm 3$
$x=-2$ হলে (iii) থেকে পাই, $y^{-2}=9 \quad$ বा, $y^{2}=\frac{1}{9}$ বा, $y= \pm \frac{1}{3}$
\therefore निर्वেয় সমाधान $(x, y)=(2,3),(2,-3)\left(-2, \frac{1}{3}\right),\left(-2,-\frac{1}{3}\right)$

অনুশীলনী-৫•৬

সমাধান কর্ন :

ว। $2^{x}+3^{y}=31$
र। $3^{x}=9^{y}$
৩। $3^{x} \cdot 9^{y}=81$
$2^{x}-3^{y}=-23$

$$
5^{x+y+1}=25^{x y}
$$

$$
2 x-y=8
$$

8। $2^{x} \cdot 3^{y}=18$
©। $a^{x} \cdot a^{y+1}=a^{7}$
$2^{2 x} \cdot 3^{y}=36$
$a^{2 y} \cdot a^{3 x+5}=a^{20}$
৬। $\left.\begin{array}{rl}y^{x} & =x^{2} \\ x^{2 x} & =y^{4}\end{array}\right\} y \neq 1$
१। $y^{x}=4$
b- $\quad 4^{x}=2^{y}$
৯। $8 y^{x}-y^{2 x}=16$
$y^{2}=2^{x}$
$(27)^{x y}=9^{y+1}$

৫•৭ লেখচিত্রের সাহায্যে দ্বিঘাত সমীকরণ $a x^{2}+b x+c=0$ এর সমাধান
দ্বিঘাত সমীকরণ $a x^{2}+b x+c=0$ এর সমাধান আমরা ইতোপূর্বে বীজগণিতীয় পদ্ধতিতে শিখেছি। এখন লেখচিত্রের সাহায্যে ইহার সমাধান পদ্ধতি আলোচনা করা হবে।

মনে করি $y=a x^{2}+b x+c$. তাহলে x এর যে সকল মানের জন্য $y=0$ হবে অর্থাৎ লেখচিত্রটি x-অক্ষকে ছেদ করবে, x এর ঐ সকল মান-ই $a x^{2}+b x+c=0$ সমীকরণটির সমাধান।

উদাহর্নণ ১। লের্থচিত্রের সাহায্যে $x^{2}-5 x+4=0$ এর সমাধান কর।

সমাধান : মনে করি, $y=x^{2}-5 x+4$.
x এর কয়েকটি মানের জন্য y এর মান নির্ণয় করে এই সমীকরণের লেখের কয়েকটি বিন্দুর স্থানাংক নির্ণয় করি :

x	0	1	2	2.5	3	4	5
y	4	0	-2	-2.25	-2	0	4

উপরের সারণিতে প্রদপ্ত বিন্দুকুলো ছক কাগজে স্থাপন করে সমীকরণটির লেখ্রচ্র অঙ্কন করি। দেখা যায় যে লেখচিত্রটি x-অক্ষকে $(1,0)$ ও $(4,0)$ বিন্দুতে ছেদ করেছে।
সুতরাং, সমীকরণটির সমাধান $x=1$ বा $x=4$.

উদাহর্ন ২। লের্থচিত্রের সাহায্যে $x^{2}-4 x+4=0$ এর সমাধান কর।
সমাধান : মনে করি, $y=x^{2}-4 x+4$.
x এর কয়েকটি মানের জন্য y এর মান নির্ণয় করে লেখচিত্রের জন্য কয়েকটি বিন্দুর স্থানাংক নির্ণয় করি ঃ

x	0	1	1.5	2	2.5	3	4
y	4	1	0.25	0	0.25	1	4

উপরের সারণি হতে প্রাপ্ত বিন্দুগ্ুলো ছক কাগজে স্থাপন করে সমীকরণটির লেখচিত্র অঙ্কন করি। লেখচিত্রে দেখা যায় যে ইহা x-অক্ষকে $(2,0)$ বিন্দুতে স্পর্শ করেছে। যেহেতু দ্বিঘাত সমীকরণণের দুইটি মূল থাকে, সেহেতু সমীকরণটির সমাধান হবে $x=2, x=2$.

উদাহরণণ ৩। লেখচিত্রের সাহায্যে সমাধান কর ঃ $x^{2}-2 x-1=0$
সমাধান : মনে করি, $y=x^{2}-2 x-1$.
সমীকরণটির লেখ্খচিত্র অঙ্কনের জন্য x এর কয়েকটি মান নিয়ে তাদের অনুর্ূপ y এর মান নির্ণয় করি :

x	-1	-0.5	0	0.5	1	1.5	2	2.5	3
y	2	0.25	-1	-1.75	-2	-1.75	-1	0.25	2

সারণিতে স্থাপিত বিন্দু,্ুলো ছক কাগজে স্থাপন করে সমীকরণটির লেখচিত্র অঙ্কন করি। দেখা যায় যে লেখচিত্রটি x-অক্ষকে মোটামুটিভাবে $(-0.4,0)$ ও $(2.4,0)$ বিन্দুতে ছেদ করেছে । সুতরাং, সমীকরণটির সমাধান $x=-0.4$ (আসन्न) বা $x=2.4$ (আসन्न)।

উদাহর্রণ 8। $-x^{2}+3 x-2=0$ এর মূলদ্বয় লেখচিত্রের সাহায্যে নির্ণয় কর।
সমাধান : মনে করি, $y=-x^{2}+3 x-2$.
x এর কয়েকটি মানের জন্য y এর মান নির্ণয় করে প্রদপ্ত সমীকরণের লেখের কয়েকটি বিন্দুর স্থানাংক নির্ণয় করি :

x	0	0.5	1	1.5	2	2.5	3
y	-2	-0.75	0	0.25	0	-0.75	-2

প্রাপ্ত বিন্দুগুলো ছক কাগজে স্থাপন করে সমীকরণটির লের্থচিত্র অঙ্কন করি। দেখা যায় যে লেখচিত্রটি $x-$ অক্ষের উপর $(1,0)$ ও $(2,0)$ বিन्দू দিয়ে গিয়েছে। সুতরাং সমীকরণটির সমাধান $x=1$ বा $x=2$.

অनুশীলनी ৫.৭

১। $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}=0$ এবং $\mathrm{a}, \mathrm{b}, \mathrm{c}$ বাচ্তুব সংখ্যা হলে $\mathrm{x}^{2}-\mathrm{x}-12=0$ সমীকরণণে b এর মান কোনটি?
क. 0
ข. 1
গ. -1
घ. 3

२। $16^{x}=4^{x+1}$ সমীকর্গণঢির সমাধান কোনটি?
क. 2
ข. 0
গ. 4
घ. 3
৩। $\mathrm{x}^{2}-\mathrm{x}+13=0$ হলে সমীকরণणिর একটি মূল কোনটি?
क. $\frac{-1+\sqrt{-51}}{2}$
ข. $\frac{-1-\sqrt{51}}{2}$
ๆ. $\frac{1+\sqrt{-51}}{2}$
घ. $\frac{1+\sqrt{51}}{2}$
$8 । y^{x}=9, y^{2}=3^{x}$ रलে সঠिক সমাধাन কোনটি?
क. $(2,3),\left(-2, \frac{1}{9}\right)$
ข. $(2,-2),\left(3, \frac{1}{9}\right)$
গ. $\left(2, \frac{1}{9}\right),(-2,3)$
घ. $\left(-2,-\frac{1}{9}\right),(2,3)$

নিচের্র তথ্যের ভিত্তিতে ৫ ও ৬ নং প্রশ্নের উত্তর দাও :
দুইটি ধনাত্যক পুর্ণ সংখ্যার বর্গের অন্তর 11 এবং đণফল 30।
৫। সংখ্যা দুইটি কি কি?
ক. 1 এবং 30
ข. 2 এবং 15
গ. 5 এবং 6
ঘ. 5 এবং-6

৬। সংখ্যা দুইটিন্র বর্গের সমষ্টি কত?
क. 1
थ. 5
গ. 61
घ. $\sqrt{41}$

i $\mathrm{x}+\frac{1}{x}=6$
ii $x^{2}+1=6 x$
iii $x^{2}-6 x-1=0$
निচের্ন কোनঢि সঠिक ?
क. i ও ii
थ. i ওiii
গ. ii ఆ iii
घ. i, ii ও iii

৮। $2^{\mathrm{px}-1}=2 \mathrm{q}^{\mathrm{px}-2}$ এর সমাधान কোनটि?
क. $\frac{p}{2}$
ข. p
ๆ. $-\frac{p}{2}$
घ. $\frac{2}{p}$

লেখচিত্রের সাহায্যে নিচের সমীকর্নণখুলোর সমাধান কর :
৯। $x^{2}-4 x+3=0$
১०। $x^{2}+2 x-3=0$
১১। $x^{2}+7 x=0$
১२। $2 x^{2}-7 x+3=0$
১৫। $x^{2}+x-3=0$
১৩। $2 x^{2}-5 x+2=0$
>8। $x^{2}+8 x+16=0$
১৬। $x^{2}=8$

১৭।একটি সংখ্যার বর্গের দ্বিণ্જণ সংথ্যাটির 5 ঞুণ থেকে 3 কম। কিন্ঠু ঐ সংখ্যাটির বর্গের 3 ঞুণ সংথ্যাটির 5 ঞুণ থেকে 3 বেশি।

ক. উদ্দীপকের তথ্যণ্তোর সাহায্যে সমীকরণ গঠন কর।
থ. সূত্র প্রয়োগ করে ১ম সমীকরণটি সমাধান কর।
গ. ২য় সমীকরণটি লেখচিত্রের সাহায্যে সমাধান কর।
১৮। ।জनাব আশফাক আनीর জমির ক্ষেত্রফন 0.12 হেষ্টর। জমিটির অর্ধপরিসীমা এর একটি কর্ণ অপেক্ষা 20 মিটার বেশি। তিনি তাঁর জমি থেকে শ্যামবাবুর নিকট এক তৃতীয়াংশ বিক্রি করেন। শ্যাম বাবুর জমির দৈর্ঘ্য, প্রস্থ অপেক্মা 5 মিটার বেশি।
ক. উদ্দীপকের আলোকে দুইটি সমীকরণ গঠন কর।
থ. আশফাক আলীর জমির দৈর্ঘ্য ও প্রস্থ নির্ণয় কর।
গ. শ্যামবাবুর জমিটির কর্ণের দৈর্ঘ্য ও পরিসীমা নির্ণয় কর।

ষষ্ঠ অধ্যায়

অসমতা

সমীকরণ বা সমতা সম্পর্কে আমাদের ধারণা হয়েছে। কিন্তু বাস্তব জীবনে অসমতারও একটা বিস্তৃত ও কুরুত্বপূর্ণ ভূমিকা রয়েছে। দৈনन্দিন জীবনে প্রকৃতিতে আমরা যতকিছু দেথি তার কোনটির ক্ষেত্রেই এক জাতীয় দুইটি বস্ভুর বা জীবজন্ভুর বা দুইজন মানুষের যেকোনো ধরনের পরিমাপ হুবহু এক পাওয়া যায় না। এমনকি দেখতেও একই রকম হয় না। ফলে আমাদের অসমতার ধারণা প্রয়োজন হয়।

অধ্যায় শেষে শিক্ষার্থীরা -
> এক ও দুই চলকের এক ঘাত বিশিষ্ট অসমতা ব্যাথ্যা করততে পারবে।
$>$ দুই চলকবিশিষ্ট সরল অসমতা গঠন ও সমাধান করতে পারবে।
> বাস্তবভিত্তিক গাণিতিক সমস্যায় অসমতা ব্যবহার করে সমাধান করুতে পারবে।
> এক ও দুই চলকবিশিষ্ট অসমতাকে লেখচিত্রের সাহায্যে সমাধান কর্নতে পারবে।

অসমতা

মনে করি একটি ক্লাশের ছাত্রসংখ্যা 200 জন। স্বাভাবিকভাবে দেখা যায় যে, ঐ ক্লাশে সবদিন সকলে উপস্থিত থাকে না। একটি निर्দিষ্ট দিনে উপস্থিত ছাত্র সংখ্যা x হলে আমরা লিখতে পারি $0<x \leq 200$ । একই ভাবে আমরা দেখি যে, কোনোও একটি নিমন্র্রিত অনুষ্ঠানে সবাই উপস্থিত হয় না। পোশাক-পরিচ্ছদ ও অন্যান্য অনেক ভোগ্যপণ্য তৈরিতে পরিষ্কার ভাবে অসমতার ধারণা প্রয়োজন হয়। দালান তৈরির ক্ষেত্রে, পুস্তক মুদ্রণের ক্ষেত্রে এবং এরকম আরও অনেক ক্ষেত্রে উপাদানণ্ডেো সঠিক পরিমাণে নির্ণয় করা यায় না বিধায় প্রথম পর্যায়ে অনুমানের ভিত্তিতে উপাদানগুলো ক্রয় বা সং্থহ করতে হয়। অতএব দেখা যাচ্ছে যে, আমাদের দৈনন্দিন জীবনে অসমতার ধারণাটা খুবই গুরুত্বপূর্ণ।

সমীকরণ সংক্রান্ত স্বতঃসিদ্ধ বা বিধिসমূহ অসমতার ক্ষেত্রেও প্রযোজ্য। Жধু ব্যতিক্রম হলো অসমান রাশিকে সমান সমান ঋণাত্মক সংখ্যা দ্বারা ঞুণ বা ভাগ করলে অসমতার দিক পাল্টে যায়।
$4<6$ অসমতাটি লক্ষ করি।
$\therefore 4+2<6+2$ बा, $6<8$
उদ্রপপ $2<4$
उদ্রুপ $4<12$
তদ্রুপ $2<3$
[উভয়পক্ষে 2 যোগ করে]
[উভয়পক্ম থেকে 2 বিয়োগ করে]
[উভয়পক্ষকে 2 দ্বারা ঞুণ করে]
[উভয়পক্ষকে 2 দ্বারা ভাগ করে]

অসমতাটির উভয়পক্ষকে -2 দ্বারা শুণ করলে আলাদাভাবে পাওয়া যায় -8 এবং -12
এখানে $-8>-12$, তেমনি $-2>-3$ \{উভয়পক্ষকে -4 দ্বারা ভাগ করে]
সাধারণভাবে বলা যায়, যদি $a<b$ হয়, তবে,
$a+c<b+c$
c এর যেকোনো মানের জন্য
$a-c<b-c$
c এর যেকোনো মানের জন্য
$a c<b c$
c এর ধনাত্যক মানের জন্য
$\frac{a}{c}<\frac{b}{c}$
c এর ধনাত্যক মানের জন্য
কিন্ভ $a c>b c$
c এর ঋণাত্মক মানের জন্য
$\frac{a}{c}>\frac{b}{c}$
c এর ঋণাত্মক মানের জন্য

কাজ: ১। তোমাদের শ্রেণির যে সকল ছাত্র-ছৃাত্রীর উচ্চতা 5 ফুটের চেয়ে বেশি এবং 5 ফুটের চেয়ে কম তাদের উচ্চতা অসমতার মাধ্যমে প্রকাশ কর।

২। কোনো পরীক্ষার মোট নম্বর 1000 হলে, একজন পরীক্ষার্থীর প্রাপ্ত নম্বর অসমতার মাধ্যমে প্রকাশ কর।
উদাহর্নণ ১। সমাধান কর ও সমাধান সেটটি সংখ্যারেখায় দেখাও: $4 x+4>16$

সমাধান : দেওয়া আছে, $4 x+4>16$
$\therefore 4 x+4-4>16-4$ [উভয়পক্ষ থেকে 4 বিয়োগ করে]

বा, $4 x>12$
বा, $\frac{4 x}{4}>\frac{12}{4}$
[উভয়পক্ষকে 4 দ্বারা ভাগ করে]
বा, $x>3$
\therefore निर्ণেয় সমাধান $x>3$
এখানে সমাধান সেট, $S=\{x \in R: x>3\}$
সমাধান সেটটি নিচে অঙ্কিত সংখ্যারেখায় দেখানো হলো। 3 অপেক্ষা বড় সকল বাস্তব সংখ্যা প্রদত্ত অসমতার সমাধান এবং সমাধান সেট, $S=\{x \in R: x>3\}$

উদাহর্থণ ২। সমাধান কর এবং সমাধান সেট সংখ্যারেখায় দেখাও : $x-9>3 x+1$
সমাধান : দেওয়া আছে, $x-9>3 x+1$
$\therefore x-9+9>3 x+1+9$
বा, $x>3 x+10$
বा, $x-3 x>3 x+10-3 x$
বा, $-2 x>10$
বा, $\frac{-2 x}{-2}<\frac{10}{-2}$
[উভয়পক্ষকে ঋণাত্দক সংখ্যা -2 দ্বারা ভাগ করায়

বা, $x<-5$ অসমতার দিক পাল্টে গেছে]
\therefore निर्व̛श़ সমাধান $x<-5$
এখানে সমাধান সেট $S=\{x \in R: x<-5\}$ অর্থাৎ -5 অপেক্ষা ছোট সকল বাস্তব সং্থ্যা প্রদত্ত অসমতার সমাধান।

বি:দ্র: সমীকর্রণের সমাধান যেমন একটি সমীকরণণ (সমতা) দারা প্রকাশ পায়, তেমনি অসমতার সমাধান একটি অসমতা দ্বারা প্রকাশ পায়। অসমতার সমাধান সেট (সাধারণণত) বাস্তব সংখ্যার অসীম উপসেট।
$a \geq b$ এর অর্থ, $a>b$ অথবা $a=b$
जर্থা ช̛ু $a<b$ হলেই $a \geq b$ মিথ্যা হয়।
অতএব, $4>3$ এবং $4=4$ দুইটি উক্কিই সত্য।
উদাহর্নণ ৩। সমাধান কর : $a(x+b)<c,[a \neq 0]$
সমাধান : a ধनाত্যক হলে, $\frac{\mathrm{a}(\mathrm{x}+\mathrm{b})}{\mathrm{a}}<\frac{\mathrm{c}}{\mathrm{a}}$, উভয়পকককে a দ্বারা ভাগ করে পাই,
$\mathrm{x}+\mathrm{b}<\frac{\mathrm{c}}{\mathrm{a}}$ बा, $\mathrm{x}<\frac{\mathrm{c}}{\mathrm{a}}-\mathrm{b}$
a ঋণाত্যক হলে একই প্রক্রিয়ায় পাই, $\frac{\mathrm{a}(\mathrm{x}+\mathrm{b})}{\mathrm{a}}>\frac{\mathrm{c}}{\mathrm{a}}$
বा, $x+b>\frac{c}{a}$ বा, $x>\frac{c}{a}-b$
\therefore निर्ণের় সমাধাन : (i) $\mathrm{x}<\frac{\mathrm{c}}{\mathrm{a}}-\mathrm{b}$, यमि $\mathrm{a}>0$ इड़,

$$
\text { (ii) } \mathrm{x}>\frac{\mathrm{c}}{\mathrm{a}}-\mathrm{b} \text {, यদি } a<0 \text { इয়। }
$$

বি:দ্র: a यमि শৃন্য এবং c यদি ধনাত্যক হয়, তবে x এর যেকোনো মানের জন্য অসমতাটি সত্য হবে। কিম্ভ a यদি শূन্য এবং c ঋণाত্যক হয়, তবে অসমতাঢির কেনো সমাধান थাকবে না।

প্রশ্নমালা ৬•১

অসমতাঞ্ৰলো সমাধান কর এবং সংথ্যারের়াখায় সমাধান সেট দেখাও :
>1 $y-3<5$
2। $3(x-2)<6$
-। $3 x-2>2 x-1$
8। $z \leq \frac{1}{2} z+3$
৫ $18 \geq 2-2 x$ ৬। $x \leq \frac{x}{3}+4$ १। $5(3-2 t) \leq 3(4-3 t) \quad$ ৮। $\frac{x}{3}+\frac{x}{4}+\frac{x}{5}>\frac{47}{60}$

অসমতার ব্যবহার

সমীকরণের সাহায্যে তোমরা সমস্যা সমাধান করতে শিখেছ। একই পদ্ধতিতে অসমতা সম্পর্কিত সমস্যার সমাধান করতে পারবে।

উদাহর্রণ ১। কোন্নে পরীক্ষায় বাংলা ১ম ও ২য় পত্রে রমা পেয়েছে যথাক্রমে $5 x$ এবং $6 x$ নম্বর এবং কুমকুম পেয়েছে $4 x$ এবং 84 নম্বর। কোন্ো পত্রে কেউ 40 এর নিচে পায়নি। বাংলা বিষয়ে কুমকুম হয়েছে প্রথম এবং রমা হয়েছে দ্বিতীয়। X এর মান সম্টাব্য অসমতার মাধ্যমে প্রকাশ কর।
সমাধান : রমা পেয়েছে মোট $5 x+6 x$ নম্বর এবং কুমকুম পেয়েছে $4 x+84$ মোট নম্বর।
প্রশ্নমতে, $5 x+6 x<4 x+84$
বা, $5 x+6 x<4 x+84$ বा, $7 x<84$
বा, $x<\frac{84}{7}$ বा, $x<12$
কিন্তু, $4 x \geq 40$ [প্রাপ্ত সর্বনিম্ন নম্বর 40] বা, $\mathrm{x} \geq 10$
\therefore অসমতার মাধ্যমে লিখা যায় $10 \leq x \leq 12$
উদাহর্নণ ২। একজন ছাত্র 5 টাকা দরে x টি পেন্গিল এবং 8 টাকা দরে $(x+4)$ টি খাতা কিনেছে। মোট মূল্য অনুর্ধ্ব 97 টাকা হলে, সর্বাধিক কয়টি পেন্সিল কিনেছে?
সমাধান : x টি পেপ্সিলের দাম $5 x$ টাকা এবং $(x+4)$ টি খাতার দাম $8(x+4)$ টাকা।
প্রশ্নমতে, $5 x+8(x+4) \leq 97$ বা, $5 x+8(x+4) \leq 97$
বा, $13 x \leq 97-32$ বा, $13 x \leq 65$
বा, $x \leq \frac{65}{13}$ বा, $x \leq 5$
\therefore ছাত্রটি সর্বাধিক 5 টি পেন্গিল কিনেছে।
কাজ: 140 টাকা কেজি দরে ডেভিড x কেজি আপেল কিনলেন। তিনি বিক্রেতাকে 1000 টাকার একখানা নোট দিলেন। বিক্রেতা 50 টাকার x খানা নোটসহ বাকী টাকা ফেরত দিলেন। সমস্যাটিকে অসমতার মাধ্যমে প্রকাশ কর এবং X এর সম্ভাব্য মান নির্ণয় কর।

প্রশ্নমালা ৬•২

১-৫ পর্যন্ত সমস্যাগুলো অসমতার মাধ্যমে প্রকাশ কর এবং X এর মান সম্ভাব্য মান নির্ণয় কর।
১। এক বালক ঘণ্টায় X কि. মি. বেগে 3 ঘন্টা হাঁটল এবং ঘন্টায় $(x+2)$ कि. মি. বেগে $\frac{1}{2}$ ঘণ্টা দৌড়াল এবং তার অতিত্রান্ত পথ 29 কি. মি. এর কম।

২। একটি বোর্ডিং-এ রোজ 4 x কেজি চাল এবং $(\mathrm{x}-3)$ কেজি ডাল লাগে এবং চাল ও ডাল মিলে 40 কেজির বেশি লাগে না।
$\bigcirc 1$
70 টাকা কেজি দরে সোহরাব সাহহব x কেজি আম কিনলেন। বিক্রেতাকে 500 টাকার একथানা নোট দিলেন। বিক্রেত 20 টাকার x খানা নোটসহ বাকি টাকা ফেরত দিলেন।
8। একটি গাড়ি 4 घन্টায় যায় x कि. মি. এবং 5 ঘণ্টায় যায় $(x+120)$ कि. মি.। গাড়িটির গড় গতিবেগ ঘণ্টায় 100 কি. মি. এর বেশি নয়।
৫। এক টুকরা কাগজের ক্ষেন্রফল 40 বর্গ সে. মি.। তা থেকে x সে. মি. দীর্ঘ এবং 5 সে. মি. প্রস্থবিশিষ্ষ আয়ততাকার কাগজ কেটে নেওয়া হলো।

৬। পুত্রের বয়স মায়ের বয়সের এক-তৃতীয়াংশ। পিতা মায়ের চেয়ে 6 বছরের বড়। তিনজনের বয়সেরে সমষ্৪ি অनুর্ধ্ব 90 বছর। পিতার বয়স অসমতার মাধ্যমে প্রকাশ কর।
 বর্তমান বয়স অসমতায় প্রকাশ কর।

৮। একथানি জেট প্পেনের গতি প্রতি সেকেভে সর্বাধিক 300 মিটার। প্লেনটি 15 কি. মি. यাওয়ার প্রয়োজনীয় সময় অসমতায় প্রকাশ কর।
৯। ঢাকা থেকে জেে্দার বিমান পথে দূরত্̨ 5000 কি.মি। জেট বিমানের সর্বোচ্চ গতিবেগ ঘন্টায় 900 কি. মি.। কিন্ভ ঢাকা থেকে জেদ্গা যাবার পথে প্রতিকূল দিকে ঘন্টায় 100 কি. মি. বেপে বায়ু প্রবাহের সম্মুখীন হতে হয়। ঢাকা থেকে জেদ্দার বিরত্রিহীন উড্ডয়নেনর প্রয়োজনীয় সময় একটি অসমতার মাধ্যমে প্রকাশ কর।
১০। পৃর্ববর্তী প্রশ্নের সূত্র ধরে, জেদ্দা থেকে ঢাকা ফেরার পথে উড্ডয়নেের প্রশ্যোজনীয় সময় একটি অসমতার মাধ্যমে প্রকাশ কর।

১১। কোনো ধনা|্াক পূর্ণ সংখ্যার 5 ঞণ, সংখ্যাটির দ্বিষ্ণ এবং 15 এর সমষ্টি অপেক্ষা ছোট। সংখ্যাটির সম্টাব্য মান অসমতায় প্রকাশ কর।

দুই চলকবিশিষ্ট সর্ন একঘাত অসমতা

আমর্রা দুই চলকবিশিষ্৪ $y=m x+c$ (याর সাধারণ আকার $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$) আাারে সর্নল সমীকরণের লের্খচিত্র অঙ্কন কন্রতে শিঢেছি (সণ্তম শ্রেণীর বীজগণিত পুস্তক দ্রষ্যব্য)। আমরা দেখ্থেছি যে, এ র্রকম প্রত্যেক লেখচিত্রিই একটি সর্নল রেখা।
স্থ|নাঙ্कায়িত x, y সমতলে ax $+\mathrm{by}+\mathrm{c}=0$ সমীকর্নণের লেখচিত্রের যেকোনো বিন্দুর স্থানাঙ্ক সমীকর্রণটিকে সিদ্ধ করে অর্থাৎ সমীকরণঢির বামপক্ষ x ఆ y এর পরিবর্তে যথাক্রন্ম ঐ বিদ্দুর ভুজ ও কোঢি বসালে এর মান শূন্য হয়। অन্যদিকে, লেখচিত্রের বাইরে কোনো বিন্দুর স্থানাঙ্কই সমীকরণটিকে সিদ্ধ করে না অর্থাৎ ঐ বিদ্দুর ভুজ কোঢির জन্য $\mathrm{ax}+\mathrm{by}+\mathrm{c}$ এর মান শূন্য অপেক্মা বড় বা ছোট হয়। সমতলস্থ কোন্নো বিন্দू P এর ভুজ ও কোটি দ্মারা $\mathrm{ax}+\mathrm{by}+\mathrm{c}$ রাশির x ও y কে যথাক্রম্মে প্রতিস্থাপন করলে রাশিটির যে মান হয়, তাকে P বিन্দুতে র্রাশিটির্র মান বলা হয় এবং উক্ত মানকে সাধার্ণণ $f(P)$ ঘার্রা নির্দেশ করা হয়। P বিन্দু লেখস্থিত হলে $f(P)=0, P$ বিन्नू लেখচিত্রের বহিঃষ্থ হলে $f(P)>0$ অথবা $f(P)<0$

বাস্তবে লেখচিত্রের বহিঃস্থ সকল বিন্দু লেখ দ্বারা দুইটি অর্ধতলে বিভক্ত হয় ঃ একটি অর্ধতলের প্রত্যেক বিন্দু P এর জन्য $\mathrm{f}(\mathrm{P})>0$; অপর অর্ধতলের প্রত্যেক বিন্দু P এর জন্য $\mathrm{f}(\mathrm{P})<0$.
বলা বাহুল্য, লেখের উপর অবস্থিত প্রত্যেক বিন্দু P এর জন্য $f(P)=0$
উদাহরণ ১। $\mathrm{x}+\mathrm{y}-3=0$ সমীকরণণি বিবেচনা করি। সমীকরণণি থেকে পাওয়া যায় ঃ

$$
y=3-x
$$

x	0	3	1
y	3	0	2

এবং (x, y) সমতলে ছক কাগজে ছোট বর্গক্ষেত্রের বাহুর দৈর্ঘ্যকে একক ধরে সমীকরণটির লেখচিত্রটি নিম্নরূপ হয়:

এই লেখচিত্র রেখা সমগ্র তলটিকে তিনটি অংশে পৃথক করে। যথা:
(১) রেখার (ক) চিহ্তিত পাশের বিন্দুসমূহ
(২) রেখার (খ) চিহ্নিত পাশের বিন্দুসমূহ (৩) রেখাস্থিত বিন্দুসমূহ।

এখানে (ক) চিহ্তিত অংশকে লেখ রেখার "উপরের অংশ" ও (খ) চিহ্তি অংশকে লেখ- রেখার "নিচের অংশ" বলা যায়। দুই চলকবিশিষ্ট অসমতার লেখচিত্র

উদাহরণ ২। $\mathrm{x}+\mathrm{y}-3>0$ অথবা $\mathrm{x}+\mathrm{y}-3<0$ অসমতার লেখচিত্র অংকন কর।
সমাধান : উপরোক্ত অসমতাদ্বয়ের লেখচিত্র অংকন করতে প্রথমেই ছক কাগজে $\mathrm{x}+\mathrm{y}-3=0$ সমীকরণটির লেখচিত্র অংকন করি।
$x+y-3=0$ সমীকরণ থেকে পাই

x	0	3	1
y	3	0	2

চিত্র
$\mathrm{x}+\mathrm{y}-3>0$ অসমতার লেখচিত্র অঙ্কনের জন্য উক্ত অসমতায় মূলবিন্দু $(0,0)$ এর মান বসালে আমরা পাই $-3>0$ या সত্য নয়। কাজেই, অসমতার ছায়াচিত্র হবে $\mathrm{x}+\mathrm{y}-3=0$ রেখার যে পাশে মূলবিন্দু রয়েছে তার বিপরীত পাশে।

চিত্র
$\mathrm{x}+\mathrm{y}-3<0$ অসমতার লের্থচিত্র অংকনের জন্য উক্ত অসমতায় মূলবিন্দু $(0,0)$ এর মান বসালে পাওয়া যায় $-3<0$ या অসমতাকে সিদ্ধ করে বা মান সত্য। কাজেই, এ অবস্থায় অসমতার ছায়াচিত্র হবে রেখাটির যে পাশ্রে মূলবিন্দু রয়েছে সে পাশে।

চিত্র
উদাহর্নণ ৩। $2 \mathrm{x}-3 \mathrm{y}+6 \geq 0$ অসমতার সমাধান সেটের বর্ণনা দাও ও চিত্রিত কর।
সমাধান : আমরা প্রথমে $2 \mathrm{x}-3 \mathrm{y}+6=0$ সমীকরণেের লেখ্খচিত্র অঙ্কন করি।
সমীকরণটি থেকে পাওয়া যায় :
$2 x-3 y+6$ বा $y=\frac{2 x}{3}+2$
এ লেখচিত্রস্থিত কয়েকটি স্থানাহ্ক :

x	0	-3	3
y	2	0	4

স্থানাঙ্কায়িত ছক কাগজের ক্ষুদ্রতম বর্গের বাহুর দৈর্ঘকে একক ধরে $(0,2),(-3,0),(3,4)$ বিন্দুকুলো স্থাপন করে সমীকরণটির লেখচিত্র অঙ্কন করি।

চিত্র
এখন মূলবিন্দু $(0,0)$ তে $2 x-3 y+6$ রাশির মান 6 , या ধनাত্যক। সুতরাং লের্থচিত্র রেখাটির যে পার্শে মূলবিন্দু রয়েছে সেই পাশের সকল বিন্দুর জন্যই $2 \mathrm{x}-3 \mathrm{y}+6>0$

অতএব, $2 \mathrm{x}-3 \mathrm{y}+6>0$ অসমতার সমাধান সেট $2 \mathrm{x}-3 \mathrm{y}+6>0$ সমীকরণের লেখচিত্রস্থিত সকল বিন্দুর এবং লেখচিত্রের যে পাশে মূলবিন্দু অবস্থিত সেই পাশের সকল বিন্দুর স্থানাঙ্ক সমন্বয়ে গঠিত।
এই সমাধান সেটের লেখচিত্র উপরের চিত্রের চিহ্নিত অংশটুকু যার মধ্যে লেখচিত্র রেখাটিও অন্তর্ভুক্ত।
উদাহর্রণ 8। x, y সমতলে, $-2 \mathrm{x}<5$ অসমতার লের্খচিত্র অঙ্কন কর।
সমাধান : $-2 \mathrm{x}<5$ অসমতাটিকে এভাবে লেখা যায়।

$$
2 x+5>0 \quad \text { বा, } 2 x>-5 \quad \text { বा, } x>-\frac{5}{2}
$$

এখন স্থানাঙ্কায়িত x, y সমতলে $\mathrm{x}=-\frac{5}{2}$ সমীকরণের লের্খচিত্র অঙ্কন করি। ছক কাগজের ক্ষুদ্রতম বর্গের বাহুর দৈর্ঘ্যের দ্বিক্তণকে একক ধরে $\left(-\frac{5}{2}, 0\right)$ বিन्দু দিয়ে y অক্ষের সমান্তরাল করে লেখচিত্র রেখাটি অঙ্কন করা হলো।

চিত্র

এই লেখচিত্র রেখার ডান পাশে মূলবিন্দু অবস্থিত এবং মূলবিন্দুতে $\mathrm{x}=0$ যা, $>-\frac{5}{2}$
সুতরাং লেখচিত্র রেখার ডান পাশের সকল বিন্দুর স্থানাঙ্কই প্রদত্ত অসমতার সমাধান (লেখচিত্র রেখার বিন্দুক্তুলো বিবেচ্য নয়)। সমাধান সেটের লের্খচিত্র উপরের চিত্রের চিহ্তিত অংশটুকু (যার মধ্যে লেখচিত্র রেখাটি অন্তর্ভুক্ত নয়)।
উদাহর্রণ ৫। $\mathrm{y} \leq 2 \mathrm{x}$ অসমতার লেরচিত্র অঙ্কন কর।
সমাধান : $\mathrm{y} \leq 2 \mathrm{x}$ অসমতাটিকে $\mathrm{y}-2 \mathrm{x} \leq 0$ আকারে লেখা যায়।
এখन $\mathrm{y}-2 \mathrm{x}=0$ অथाৎ $\mathrm{y}=2 \mathrm{x}$
সমীকরণের লেখচিত্র অঙ্কন করি। সমীকরণটি থেকে পাই,

x	0	2	-2
y	0	4	-4

স্থানাম্কায়িত ছক কাগজের ক্ষুদ্রতম বর্গের দৈর্ঘকে একক ধরে $(0,0),(2,4),(-2,-4)$ বিन्দুখুলোকে স্থাপন করে লেখচিত্র রেখাটি অঙ্কন করা হলো।

চিত্র
$(1,0)$ বিन्দু লের্খচিত্র রেথার ‘নিচের অংশে’ আছে। এই বিন্দুতে $y-2 x=0-2 \times 1=-2<0$
সুতরাং লেখচিত্র রেখাটি ও তার নিচের অংশ [অর্থাৎ যে অংশে $(1,0)$ বিन्দूটি অবস্থিত] সমন্বয়ে গঠিত সমতলের অংশটুকুই প্রদত্ত অসমতার লেখচিত্র।
উদাহর্রণ ৬। $2 \mathrm{x}-3 \mathrm{y}-1 \geq 0$ এবং $2 \mathrm{x}+3 \mathrm{y}-7 \leq 0$ অসমতা দুইটির যুগপৎ সমাধান চিহ্নিত কর।
সমাধান : প্রথমে $2 x-3 y-1=0$

$$
\begin{equation*}
\text { এবং } 2 x+3 y-7=0 \tag{i}
\end{equation*}
$$

সমীকরণ দুইটির লের্খচিত্র অঙ্কন করি।
(i) থেকে পাই,
$3 y=2 x-1$ বा, $y=\frac{2 x-1}{3}$
এখানে,

x	5	-4	-1
y	3	-3	-1

(ii) থেকে পাই, $3 \mathrm{y}=-2 \mathrm{x}+7$ बा, $\mathrm{y}=\frac{-2 \mathrm{x}+7}{3}$

এখানে,

x	-1	2	-4
y	3	1	5

এখন স্থানাঙ্কায়িত ছক কাগজের ক্ুুদ্রতম বর্গের বাহ্র দৈর্ঘ্যকে একক ধরে $(5,3),(-4,-3),(-1,-1)$ বিন্দুঞ্ৰুো স্থ|পন করে $2 x-3 y-1=0$ সমীকরণের লেখচিত্র রেখা এবং $(-1,3),(2,1),(-4,5)$ বিদ্দুখ্ঠলো স্থাপন করে $2 x+3 y-7=0$ সমীকরণের লেখচিত্র রেখা অক্কন করি।

মূলবিन্দু $(0,0)$ তে $2 x-3 y-1$ রাশির মান -1 , या ঋণাত্র। সুতরাং $2 x-3 y-1=0$ এর লেখচिত্র রেখার যে পাশে মৃলবিন্দু অবস্থিত সেই পাশের সকল বিদ্দুর জন্য $2 \mathrm{x}-3 \mathrm{y}-1<0$ এবং অপর পাশের সকল বিদ্দুর জন্য $2 x-3 y-1>0$; অতএব লেখচিত্র রেখাট্সিহ তার ‘निঢে’ সতলের চিহ্চিত অং্শ $2 \mathrm{x}-3 \mathrm{y}-1>0$ जসমতার लেখচিত্র। आবার, $(0,0)$ তে $(2 x-3 y-7)$ রাশির মান -7 , যা ঋাণाত্যক। সুতরাং $2 x+3 y-7=0$ এর লেখচিত্র রেখার যে পাশে মূলবিদ্দু অবস্থিত সেই পাশের সকল বিন্দুর জন্য $2 \mathrm{x}+3 \mathrm{y}-7<0$, অতএব লের্ৃচ্রি রেখাটিসহ তার ‘নিচে’ সমতলের চিহ্তি অং্শ $2 \mathrm{x}+3 \mathrm{y}-7 \leq 0$ অসমতার লেখচিত্র।
অতএব, এই রেখা দুইঢির্র সংশিষ্ট অংশ সহ এই দুইভাবে চিহ্নিত অংশের ছেদাংশই অসমতা দুইটির যুগপৎ সমাধানের লের্িত্র। চিত্রে গাত়ভাবে চিহিত্ত অং্শই (সীমারেখাসহ) এই লের্খচিত্র।

অনুশীলনী ৬.৩

১। $5 x+5>25$ অসমতাঢির সমাধান সেট কোনটি?
क. $S=\{x \in R: x>4\}$
ข. $S=\{x \in R: x<4\}$
গ. $S=\{x \in R: x \leq 4\}$
च. $S=\{x \in R: x \geq 4\}$

२। $x+y=-2$ সমীকর্নণঢত্তে x এর কোণ মানের জন্য $y=0$ হবে?
क. 2
थ. 0
গ. 4
घ. -2

৩। $2 x y+y=3$ সমীকরণণির সঠিক স্থানাংক কোনণ্ৰো ?
क. $(1,-1),(2,-1)$
ข. $(1,1),(2,-1)$
ๆ. $(1,1),(-2,1)$
घ. $(-1,1),(2,-1)$

নিম্নে অসমতাটি থেকে 8 ও ৫ নম্বর প্রশ্নের উত্তর দাও:

$$
\mathrm{x} \leq \frac{x}{4}+3
$$

8। অসমতাটির সমাধান সেট কোনটি?
क. $S=\{x \in R: x>4\}$
ข. $S=\{x \in R: x<4\}$
গ. $S=\{x \in R: x \leq 4\}$
ঘ. $S=\{x \in R: x \geq 4\}$

৫। অসমতাটির সমাধান সেটের সংখ্যা রেখা কোনটি?
(क)

(*)

(Я)

(घ)

নিম্নের অনুচ্ছেদটি পড়ে ৬ ও ৭ নম্বর প্রশ্নখুলোর উত্তর দাও:
একজন ছাত্রী 10.00 টাকা দরে x টি পেল্গিল 6.00 টাকা দরে $(x+3)$ টি খাতা কিনেছে। সবগুলো মিলে মোট মূল্য অনুর্ধ্ব 114.00 টাকা।
৬। সমস্যাটির অসমতায় প্রকাশ কোনটি ?
i $10 x+6(x+3) \leq 114$
ii $\quad 10 x+6(x+3) \geq 114$
iii $10 \mathrm{x}+6(\mathrm{x}+3)<114$
নিচের কোনটি সঠিক ?
ক.
ข. ii
গ. iii
ঘ. i ও ii

१। ছাত্রীটি সর্বাধিক কতটি পেল্গিল কিনল?
क. 1 টি
ข. 3 টि
গ. 5 টि
घ. 6 টि

৮। সমস্যাটি সংখ্যা রেখায় কোনটি প্রযোজ্য হবে?
(क)

(च)

(ๆ)

(घ)

৯। নিম্নের প্রত্যেক অসমতার সমাধান সেটের লের্খচিত্র অঙ্কন কর:
(i) $x-y>-10$
(ii) $2 x-y<6$
(iii) $3 x-y \geq 0$
(iv) $3 x-2 y \leq 12$
(v) y <-2
(vi) $x \geq 4$
(vii) $y>x+2$
(viii) $\mathrm{y}<\mathrm{x}+2$
(ix) $y \geq 2 x$
(x) $x+3 y<0$

১০। নিচের প্রত্যেক অসমতাযুগলের সমাধান সেটের লেখচ্রিত্র অক্কন কর্:
(i) $\mathrm{x}-3 \mathrm{y}-6<0$ এবং $3 \mathrm{x}+\mathrm{y}+2<0$
(ii) $\mathrm{x}+\mathrm{y}-4 \leq 0$ এবং $2 \mathrm{x}-\mathrm{y}-3 \geq 0$
(iii) $\mathrm{x}-\mathrm{y}+3>0$ এবং $2 \mathrm{x}-\mathrm{y}-6 \geq 0$
(iv) $\mathrm{x}+\mathrm{y}-3>0$ এবং $2 \mathrm{x}-\mathrm{y}-5>0$
(v) $\mathrm{x}+2 \mathrm{y}-4>0$ এবং $2 \mathrm{x}-\mathrm{y}-3>0$
(vi) $5 \mathrm{x}+2 \mathrm{y}>11$ এবং $7 \mathrm{x}-2 \mathrm{y}>3$
(vii) $3 x-3 y>5$ এবং $x+3 y \leq 9$
(viii) $5 \mathrm{x}-3 \mathrm{y}-9>0$ এবং $3 \mathrm{x}-2 \mathrm{y} \geq 5$

১১। इযরত শাহজালাল বিমাन বন্দর থেকে সিছাপুর বিমান পথের দূরত্ধ 1793 কি.মি.। বাহ্লাদেশ বিমানের সর্বোচ্চ গতিবেগ 500 कि.মি./ঘন্ট।। কিম্ঠ হयরত শাহজাनान বিমান বদ্দর থেকে সিস্গাপুর যাবার পথে প্রতিকুলে 60 কি.मि/घन্টা বেগে বায়ু প্রবাহহর সম্মুধীন হয়।
ক. উদ্দীপকের সমস্যাঢির প্রয়োজनীয় সময় t घन্জা ধরে সমস্যাঢ্কে অসমতায় দেथাও।
 অসমতা সমীকর্ণ থেকে নির্ৰ্য কর এবং সং্থা রেথায় দেখাও।
গ. সিস্গাপুর থেকে হযরত শাহজালাन বিমানবন্দরে কের্রার পথে বিরতিহীন উড্ডায়নের প্রয়োজনীয় সময়কে x ধরে সমস্যাট্টে অসমতার মাষ্যমে প্রকাশ করে লেথের সাহা্্যে সমাধান কন।
 সংথ্যা থেকে ২য় সংখ্যার 3 ঞ্ণ বিয়োগ করনে অনুর্ধ 9 হয়।
ক. উদ্দীপকের সমস্যাঞ্লোকে অসমতায় দেখাও।
থ. ১ম সং্থাঢির 5 ঞণ, ইহার দ্পিণ এবং 15 এর সমষ্টি অপেক্না ছোট হলে সংথ্যাঢির সম্টাব্য মান অসমতায় প্রকাশ কর।
গ. ক নং এ গাধ্ত অসমতা যুপলের সমাধান সেটের্র লেখচিত্র অঙ্কন কর।

নবম অধ্যায়
 সূচকীয় ও লগারিদমীয় ফাংশন
 (Exponential \& Logarithmic Functions)

সমসাময়িক বাস্তবতায় সূচক ও লগারিদমীয় ফাংশনের অনেক প্রয়োগ বিধায় এর চর্চা অব্যাহত রয়েছে। যেমন জনসংখ্যা বৃদ্ধি, চক্রবৃদ্ধি মুনাফা ইত্যাদিতে উভয় ফাংশনের প্রয়োগ বিদ্যমান।

অধ্যায় শেষে শিক্ষার্থীরা

$>$ মূলদ সূচক ও অমূলদ সূচক ব্যাখ্যা করততে পারবে।
$>$ মূলদ ও অমূলদ সূচকের জন্য বিভিন্ন সূত্র প্রমাণ ও প্রয়োগ করতে পারবে।
> সূচক ও লগারিমের পারস্পারিক সম্পর্ক ব্যাখ্যা করতে পারবে।
$>$ লগারিদমের বিভিন্ন সূত্র প্রমাণ ও প্রয়োগ করতে পারবে।
> লগারিদমের ভিত্তি পরিবর্তন করতে পারবে।
> সূচকীয়, লগারিদমীয় ও পরমমান ফাংশনের ধারণা ব্যাখ্যা করতে পারবে এবং গাণিতিক সমস্যা সমাধান করতে পারবে।
$>$ ফাংশনসমূহের লের্খচিত্র অংকনে আগ্রহী হবে।
$>$ সূচকীয়, লগার্রিদমীয় ও পরমমান ফাংশনসমূহকে লের্খচিত্রের সাহায্যে উপস্থাপন করতে পারবে।
$>$ ক্যালকুলেটরের সাহায্যে লগ ও প্রতিলগ নির্ণয় করতে পারবে।
৯.১ মূলদ ও অমূলদ সূচক : মাধ্যমিক বীজগণিতে আলোচিত কিছু বিষয় যা এ অধ্যায়ের আলোচনার্ন স্বার্থে উলেখ কর্না হলো :
R সকল বাস্তব সংখ্যার সেট
N সকল স্বাভাবিক সংখ্যার সেট
Z সকল পূর্ণ সংখ্যার সেট
Q সকল মূলদ সংখ্যার সেট নির্দেশ করে।
ধরি a একটি অখণ সংখ্যা বা ভগ্নাংশ यা ধনাত্মক বা ঋণাত্মক হতে পারে এবং n একটি ধনাত্মক অখণ সংখ্যা। তাহলে a কে n বার 刃ुণ করলে 刃ুণফলটিকেকে লিখা হয় $a^{n}=a \cdot a \cdot a \ldots \ldots \ldots \ldots .$. (n বার) a এবং a^{n} কে বলা হয় a এর n ঘাত। এর্রপ ক্ষেত্রে a কে বলা হয় নিধান বা ভিত্তি (base) এবং n কে বলা হয় a এর ঘাতের সূচক (exponent) অথবা a এর সূচক।
সুতরাং 3^{4} এর ক্ষেত্রে ভিত্তি 3 এবং সূচক 4
আবার, $\left(\frac{2}{3}\right)^{4}$ এর ক্ষেত্রে ভিত্তি $\frac{2}{3}$ এর সূচক 4 ।
সংজ্ঞা : সকল $a \in R$ এর জন্য
(د) $a^{1}=a$
(২) $a^{n}=a \cdot a \cdot a \ldots \ldots \ldots a$ (n সংখ্যক উৎপাদক), যেখানে, $n \in N, n>1$

অমূলদ সূচক :

অমূলদ সূচকের জন্য $a^{x}(a>0)$ এর মান এমনভাবে নির্দিষ্ট করা হয় যে, x এর মূলদ আসন্ন মান p এর জন্য a^{p} এর মান a^{x} এর মানের আসন্न হয়। উদাহরণস্বরnপ, $3^{\sqrt{5}}$ সংথ্যাটি বিবেচনা করি। আমরা জানি, $\sqrt{5}$ একটি অমূলদ সংখ্যা এবং $\sqrt{5}=2 \cdot 236067977 \ldots \ldots . .$. (এই মান ক্যালকুলেটর ব্যবহার করে পাওয়া গিয়েছে এবং দশমিক বিস্তার যে অনন্ত তা $\sqrt{5}$ দ্বারা নির্দেশ করা হয়েছে)। $\sqrt{5}$ এর আসন্ন মান হিসেবে

$$
\begin{array}{llr}
p_{1}=2 \cdot 23 & p_{2}=2 \cdot 236 & p_{3}=2 \cdot 2360 \\
p_{4}=2 \cdot 236067 & p_{5}=2 \cdot 2360679 & p_{6}=2 \cdot 23606797
\end{array}
$$

বিবেচনা করে $3^{\sqrt{5}}$ এর আসন্न মান হিসেবে

$$
\begin{aligned}
& q_{1}=3^{2 \cdot 23}=11 \cdot 5872505 \ldots \ldots . \\
& q_{2}=3^{2 \cdot 236}=11 \cdot 6638822 \ldots \ldots \\
& q_{3}=3^{2 \cdot 2360}=11 \cdot 6638822 \ldots \ldots \\
& q_{4}=3^{2 \cdot 236067}=11 \cdot 6647407 \ldots \\
& q_{5}=3^{2 \cdot 2360679}=11 \cdot 6647523 \ldots \\
& q_{6}=3^{2 \cdot 23606797}=11 \cdot 6647532
\end{aligned}
$$

পাওয়া যায় (এই মানণ্ুলো ও ক্যালকুলেটর ব্যবহার করে পাওয়া গিয়েছে)
বাস্তবিক পক্ষে, $3^{\sqrt{5}}=11 \cdot 6647533$.

৯-২ সূচক সম্পর্কিত সূত্র :

সূত্র ১ : $a \in R$ এবং $n \in N$ হলে, $a^{1}=a, a^{n+1}=a^{n} \cdot a$.
প্রমাণ : সংজ্ঞানুযায়ী $a^{1}=a$ এবং $n \in N$ এর জन्य $a^{n+1}=\underbrace{\frac{n+1 \text { সংখ্যক }}{a \cdot a \cdot a \ldots \ldots \cdot a} \cdot a}_{n \text { সংথ्यक }}=a^{n} \cdot a$
দ্রষ্টব্য : N সকল স্বাভাবিক সংথ্যার সেট
সूত্র ২ : $n \in R$ এবং $m, n \in N$ হলে $a^{m} \cdot a^{n}=a^{m+n}$
প্রমাণ : যেকোনো $m \in N$ নির্দিষ্ট করে এবং n কে চলক ধরে খোলা বাক্য $a^{m} \cdot a^{n}=a^{m+n} \ldots \ldots .$. (1) বিবেচনা করি।
(1) $এ n=1$ বসিয়ে পাই,

বামপক্ষ $a^{m} \cdot a^{1}=a^{m} \cdot a=a^{m+1}$ ডानপক্ষ [সূত্র \]

$\therefore n=1$ এর জন্য (1) সত্য।
এখन ধরি, $n=k$ এর জन्य (1) সত্য। অর্থাৎ, $a^{m} \cdot a^{k}=a^{m+k}$. (২) তाহলে, $a^{m} \cdot a^{k+1}=a^{m}\left(a^{k} \cdot a\right)$ [मूত्র \]

$$
\begin{aligned}
& =\left(a^{m} \cdot a^{k}\right) \cdot a \text { [پণেণ সহযোজন] } \\
& =a^{m+k} \cdot a \text { [আরোহ কল্পনা] } \\
& =a^{m+k+1}[\text { সূত্র ১] }
\end{aligned}
$$

অর্থাৎ, $n=k+1$, এর জन्य (1) সত্য।
সুতরাং গাণিতিক আরোহ পদ্ধতি অনুযায়ী সকল $n \in N$ এর জন্য (1) সত্য।
\therefore যে কোনো $m, n \in N$ এর জন্য $a^{m} \cdot a^{n}=a^{m+n}$

$$
\therefore a^{m} \cdot a^{n}=a^{m+n}
$$

বর্ণিত সূত্রটিকে সূচকের মৌলিক সূত্র বলা হয়।
সূত্র ৩। $a \in R, a \neq 0$ এবং $m, n \in N$ হলে $\frac{a^{m}}{a^{n}}=\left\{\begin{array}{l}a^{m-n} \text { यथन } m>n \\ \frac{1}{a^{n-m}} \text { যথन } m<n\end{array}\right.$
প্রমাণ : (১) মনে করি, $m>n$ তাহলে $m-n \in N$
$\therefore \quad a^{m-n} \cdot a^{n}=a^{(m-n)+n}=a^{m} \quad[$ [ूত्र २]
$\therefore \frac{a^{m}}{a^{n}}=a^{m-n} \quad$ [डाগের সংজ্ঞা]
(২) মনে করি, $m<n$ তাহলে $n-m \in N$
$\therefore \quad a^{n-m} \cdot a^{m}=a^{(n-m)+m}=a^{n}$ [मूত्र २]
$\therefore \frac{a^{m}}{a^{n}}=\frac{1}{a^{n-m}}$ [डाগের সংজ্ঞা]
দ্রষ্টব্য : সূত্রটি গাণিতিক আরোহ পদ্ধতিতে প্রমাণ কর [সূত্র ২ এর অনুর্ধপ]
সूত্র 8 : $a \in R$ এবং $m, n \in N$ रলে, $\left(a^{m}\right)^{n}=a^{m n}$
সূত্র ৫ : $a, b \in R$ এবং $n \in N$ হলে, $(a \cdot b)^{n}=a^{n} \cdot b^{n}$
[সূত্র্বয় আরোহ পদ্ধতিতে প্রমাণ কর]

শূন্য ও ঋণাত্যক পূর্ণ সাংখ্যিক সূচক।

সংজ্ঞा : $a \in R, a \neq 0$ হলে,
(ง) $a^{0}=1$
(8) $a^{-n}=\frac{1}{a^{n}}$, যেখानে $n \in N$

মন্ক্য : সূচকের ধারণা সম্প্রসারণের সময় লক্ষ্য রাখা হয়, যেন সূচকের মৌলিক সূত্র $a^{m} \cdot a^{n}=a^{m+n}$ সকল ক্ষেত্রেই বৈধ থাকে।
সूত্রটি यमि $m=0$ এর জन्य সত্য হয়, তবে $a^{o} \cdot a^{n}=a^{o+n}$ অर्थाৎ, $a^{o}=\frac{a^{n}}{a^{n}}=1$ হতে হবে।
একইভাবে, সূত্রটি यमि $m=-n(n \in N)$ এর জन्य সত্য হতে হয়,
তবে $a^{-n} \cdot a^{n}=a^{-n+n}=a^{o}=1$ অর্থাৎ, $a^{-n}=\frac{1}{a^{n}}$ হতে হবে। এদিকে লক্ষ্য রেখেই উপরের সংজ্ঞা বর্ণনা করা হয়েছে।

উদাহর্গণ ১। $2^{5} \cdot 2^{6}=2^{5+6}=2^{11}$

$$
\begin{aligned}
& \frac{3^{5}}{3^{3}}=3^{5-3}=3^{2} \\
& \frac{3^{3}}{3^{5}}=\frac{1}{3^{5-3}}=\frac{1}{3^{2}} \\
& \left(\frac{5}{4}\right)^{3}=\frac{5}{4} \times \frac{5}{4} \times \frac{5}{4}=\frac{5 \times 5 \times 5}{4 \times 4 \times 4}=\frac{5^{3}}{4^{3}} \\
& \left(4^{2}\right)^{7}=4^{2 \times 7}=4^{14} \\
& \left(a^{2} b^{3}\right)^{5}=\left(a^{2}\right)^{5} \cdot\left(b^{3}\right)^{5}=a^{2 \times 5} \cdot b^{3 \times 5}=a^{10} b^{15}
\end{aligned}
$$

উদাহর্রণ ২। $6^{o}=1,(-6)^{o}=1,7^{-1}=\frac{1}{7}$.

$$
\begin{aligned}
& 7^{-2}=\frac{1}{7^{2}}=\frac{1}{49}, 10^{-1}=\frac{1}{10}=0 \cdot 1 \\
& 10^{-2}=\frac{1}{10^{2}}=\frac{1}{100}
\end{aligned}
$$

উদাহর্রণ ৩। $m, n \in N$ হলে $\left(a^{m}\right)^{n}=a^{m n}$ সূত্রটির সত্যতা স্বীকার করে নিয়ে দেখাও যে, $\left(a^{m}\right)^{n}=a^{m n}$ যেখানে $a \neq 0$ এবং $m \in N$ এবং $n \in Z$

সমাধান : (১) এখানে, $\left(a^{m}\right)^{n}=a^{m n}$.
যেখানে, $a \neq 0$ এবং $m \in N$ ও $n \in Z$ প্রথমে মনে করি, $n>0$ এক্ষেত্রে (1) এর সত্যতা স্বীকার করে নেওয়া হয়েছে।
(২) এখন মনে করি, $n=0$ এ ক্ষেত্রে $\left(a^{m}\right)^{n}=\left(a^{m}\right)^{o}=a^{o}=1$
\therefore (1) সত্য।
(৩) সবশেষে মনে করি, $n<0$ এবং $n=-k$, যেখানে $k \in N$

এक্ষেত্রে $\left(a^{m}\right)^{n}=\left(a^{m}\right)^{-k}=\frac{1}{\left(a^{m}\right)^{k}}=\frac{1}{a^{m k}}=a^{-m k}=a^{m(-k)}=a^{m n}$.
উদাহর্রণ 8। দেখাও যে, সকল $m, n \in N$ এর জন্য $\frac{a^{m}}{a^{n}}=a^{m-n}$ যেখানে $a \neq 0$
সমাধান : $m>n$ হলে, $\frac{a^{m}}{a^{n}}=a^{m-n}$ [সूত্র ৩]
$m<n$ रलে, $\frac{a^{m}}{a^{n}}=\frac{1}{a^{n-m}}$ [मूত्র ৩]
$\therefore \frac{a^{m}}{a^{n}}=a^{-(n-m)}$ [मूত्র 8]

$$
=a^{m-n}
$$

$m=n$ रলে, $\frac{a^{m}}{a^{n}}=\frac{a^{n}}{a^{n}}=1=a^{o} \quad$ [সংজ্ঞा ৩]

$$
=a^{m-m}=a^{m-n}
$$

দ্রষ্বব্য : উপরে বর্ণিত সূচকের সংজ্ঞাগুলো থেকে যেকোনো $m \in Z$ এর জন্য a^{m} এর ব্যাখ্যা পাওয়া যায়, যেখানে $a \neq 0$, সূচক ধনাত্যক অথবা শূন্য অথবা ঋণাত্যক ধরে সাধারণভাবে সকল পূর্ণ সাংখ্যিক সূচকের জন্য নিম্নোক্ত সূত্রটি প্রমাণ করা যায়।

সূত্র ৬ : $a \neq 0, b \neq 0$ এবং $m, n \in Z$ হলে,
(ক) $a^{m} \cdot a^{n}=a^{m+n}$
(च) $\frac{a^{m}}{a^{n}}=a^{m-n}$
(গ) $\left(a^{m}\right)^{n}=a^{m n}$
(घ) $(a b)^{n}=a^{n} b^{n}$
(ঙ) $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$.

কাজ:

১। গাণিতিক আরোহ পদ্ধতিতে দেখাও যে, $\left(a^{m}\right)^{n}=a^{m n}$ যেখানে $a \in R$ এবং $n \in N$
২। গাণিতিক আরোহ পদ্ধতিতে দেখাও যে, $(a \cdot b)^{n}=a^{n} b^{n}$ যেখানে $a, b \in R$ এবং $n \in N$
৩। গাণিতিক আরোহ পদ্ধতিতে দেখাও যে, $\left(\frac{1}{a}\right)^{n}=\frac{1}{a^{n}}$, যেখানে $a>0$ এবং $n \in N$ ।
অতঃপর $(a b)^{n}=a^{n} b^{n}$ সূত্র ব্যবহার করে দেখাও যে, $\left(\frac{a}{b}\right)^{n}=\frac{a^{n}}{b^{n}}$ যেখানে, $a, b \in R, b>0$, এবং $n \in N$ ।
8। মনে কর, $a \neq 0$, এবং $m, n \in Z$ ধनाত্মক পূর্ণ সাংখ্যিক সূচকের জন্য $a^{m} \cdot a^{n}=a^{m+n}$, সূত্রটির সত্যতা স্বীকার করে দেখাও যে, $a^{m} \cdot a^{n}=a^{m+n}$ যখন (i) $m>0$ এবং $n<0$, (ii) $m<0$ এবং $n<0$ ।

৯•৩ মূল এর ব্যাখ্যা

সংজ্ঞ : $n \in N, n>1$ এবং $a \in R$ হলে, यमि এমন $x \in R$ থাকে যেন $x^{n}=a$ হয়, তবে সেই x কে a এর একটি n তম মূল বলা হয়। 2 তম মূলকে বর্গমূল এবং 3 তম মূলকে घनমূল বলা হয়।

উদাহর্রণ ৫। (i) 2 এবং - 2 উভয়ই 16 -এর 4 তম মূল, কারণ $(2)^{4}=16$ এবং $(-2)^{4}=16$
(ii) -27 এর ঘनমूল -3 , কারণ $(-3)^{3}=-27$
(ii) 0 এর n তম মূল 0 , কারণ সকল $0^{n}=0$
(ii) -9 এর কোনো বর্গমূল নেই, কারণ যেকোনো বা স্তব সংখ্যার বর্গমূল অঋণাত্মক।

এখানে, উলেখ্য যে,
(ক) यদি $a>0$ এবং $n \in N, n>1$ হয়, তবে a-এর একটি অনন্য ধনাত্যক n তম মূল আছে। এই ধনাত্যক মূলকে $\sqrt[n]{a}$ দ্বারা সূচিত করা হয় ($\sqrt[2]{a}$ এর স্থলে \sqrt{a} লেখা হয়) এবং একে a এর n তম মূল বলা হয়। n জোড় সংখ্যা হলে এর্রপ a-এর অপর একটি n তম মূল আছে এবং তা হলো $\sqrt[n]{a}$ ।
(খ) यদি $a<0$ এবং $n \in N, n>1$ বিজোড় সংখ্যা হয়, তবে a-এর একটি মাত্র n তম মূল আছে যা ঋণত্রক। এই মূলকে $\sqrt[n]{a}$ দ্বারা সূচিত করা হয়। n জোড় হলে এবং a ঋণাত্মক হলে a-এর কোন n তম মূল নেই।
(ケ) 0 এর n তম মূল্য $\sqrt[n]{0}=0$

দ্রষ্ব্য : (১) $a>0$ হলে $\sqrt[n]{a}>0$
(২) $a<0$ এবং n বিজোড় হলে,
$\sqrt[n]{a}=-\sqrt[n]{|a|}<0$ [যেখানে $|a|$ হচ্ছে a এর পরমমান]।
উদাহর্নণ ৬। $\sqrt{4}=2,(\sqrt{4} \neq-2) \sqrt[3]{-8}=-2=-\sqrt[3]{8}, \sqrt{a^{2}}=|a|=\left\{\begin{array}{l}a, \text { যথन } a>0 \\ -a, \text { यখन } a<0\end{array}\right.$
সূত্র १ : $a<0$ এবং $n \in N, n>1, n$ বিজোড় হলে দেখাও যে, $\sqrt[n]{a}=-\sqrt[n]{|a|}$
প্রমাণ : মনে করি, $\sqrt[n]{|a|}=x$
তাহলে, $x^{n}=|a|$ [মূলের সংজ্ঞা]
বা, $x^{n}=-a \quad[|a|$ এর সংজ্ঞা]
বा, $-x^{n}=a$
বা, $(-x)^{n}=a$ [$\therefore n$ বিজ্েোড়]
$\therefore \sqrt[n]{a}=-x$ [मूलের সংজ্ঞা]
সূতরাং $\sqrt[n]{a}=-\sqrt[n]{|a|}$ কেনना a এর n ত্ম মূল অনन्य।

উদাহর্থণ १। - $\sqrt[3]{27}$
সমাধান : $-\sqrt[3]{27}=-\sqrt[3]{(3)^{3}}=-3$
সূত্র ৮ : $a>0, m \in Z$ এবং $n \in N, n>1$ হলে, $(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$
প্রমাণ : মনে করি, $\sqrt[n]{a}=x$ এবং $\sqrt[n]{a^{m}}=y$
তाহলে, $x^{n}=a$ এবং $y^{n}=a^{m}$

$$
\therefore \quad y^{n}=a^{m}=\left(x^{n}\right)^{m}=\left(x^{m}\right)^{n}
$$

যেহেতু $y>0, x^{m}>0$, সুতরাং মূখ্য n তম
মূল বিবেচনা করে পাই, $y=x^{m}$
বा, $\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}$
অर्थाৎ, $(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$
সূত্র ৯ : यদি $a>0$ এবং $\frac{m}{n}=\frac{p}{q}$ হয়, যেখানে $m, p \in Z$ এবং $n, q \in N, n>1, q>1$
उবে, $\sqrt[n]{a^{m}}=\sqrt[q]{a^{p}}$
প্রমাণ : এখানে $q m=p n$.
মনে করি, $\sqrt[n]{a^{m}}=x$ তহाলে, $x^{n}=a^{m}$
$\therefore\left(x^{n}\right)^{q}=\left(a^{m}\right)^{q}$
$\therefore \quad x^{n q}=a^{m q}=a^{p n}$
বा, $\left(x^{q}\right)^{n}=\left(a^{p}\right)^{n}$
$\therefore \quad x^{q}=a^{p}$ [মूथ्य n তম মूल বিবেচনা করে]
$\therefore x=\sqrt[q]{a^{p}}$
$\therefore \sqrt[n]{a^{m}}=\sqrt[q]{a^{p}}$
অनুসিদ্ধান্ড় যদি $a>0$ এবং $n, k \in N, n>1$ হয়,
उदে, $\sqrt[n]{a}=\sqrt[n k]{a^{k}}$

৯. 8 মূলদ ভগ্নাংশ সূচক :

সংজ্ঞ : $a \in R$ এবং $n \in N, n>1$ হলে, (৫) $a^{\frac{1}{n}}=\sqrt[n]{a}$ যথन $a>0$ অথবা $a<0$ এবং বিজোড়।
মন্ক্কু ১ : সূচক নিয়ম $\left(a^{m}\right)^{n}=a^{m n}$ [সূত্র ৬ দ্রষব্য]
यमि সকল ক্ষেত্রে সত্য হতে হয়, তবে $\left(a^{\frac{1}{n}}\right)^{n}=a^{\frac{n}{n}}=a^{1}=a$ হতে হবে, অর্থাৎ, $a^{\frac{1}{n}}$ এর n তম মूল হতে হবে। এ জন্য একাধিক মূলের ক্ষেত্রে দ্বর্থতা পরিহারের লক্ষ্যে উপরের সংজ্ঞা বর্ণনা করা হয়েছে।

মন্তব্য ২ : $a<0$ এবং $n \in N, n>1$ বিজোড় হলে সূত্র ৭ থেকে দেখা যায়
यে, $a^{\frac{1}{n}}=\sqrt[n]{a}=-\sqrt[n]{|a|}=-|a|^{\frac{1}{n}}$
এর্রপ ক্ষেত্রে এই সূত্রের সাহায্যেই $a^{\frac{1}{n}}$ এর মান নির্ণয় করা হয়।
মন্ত্য ৩ : a মূলদ সংখ্যা হলেও অধিকাংশ ক্ষেত্রে $a^{\frac{1}{n}}$ অমূলদ সংখ্যা হয়। এর্nপ ক্ষেত্রে $a^{\frac{1}{n}}$ এর আসন্न মান ব্যবহার করা হয়।
সংজ্ঞ : $a>0, m \in Z$ এবং $n \in N, n>1$ হलে, (৬) $a^{\frac{m}{n}}=a^{\left(\frac{1}{n}\right)^{m}}$
দ্রষ্ঠব্য ১ : সংজ্ঞা (৫) ఆ (৬) এবং সূত্র ৮ থেকে দেখা যায় যে, $a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}=\sqrt[n]{a^{m}}$
যেখানে, $a>0, m \in Z$ এবং $n \in N, n>1$
সুতরাং $p \in Z$ এবং $q \in Z, n>1$ यमि এমন হয় যে, $\frac{m}{n}=\frac{p}{q}$ হয়, তবে সূত্র ৯ থেকে দেখা याয় যে, $a^{\frac{m}{n}}=a^{\frac{p}{q}}$

দ্রষ্যব্য ২ : পূর্ণসাংথ্যিক সূচক মূলদ ভগ্নাংশ সূচকের সংজ্ঞা থেকে a^{r} এর ব্যাথ্যা পাওয়া যায়, যেখানে $a>0$ এবং $r \in Q$ । উপরের আলোচনা থেকে দেখা যায় যে, $a>0$ হলে, r কে বিভিন্ন সমতুল ভগ্নাংশ আকারে প্রকাশ করা হলেও a^{r} এর মানের কোনো তারতম্য হয় না।

দ্রষ্টব্য ৩ : সূত্র ৬ এ বর্ণিত সূচক নিয়মঞ্ুলো সাধারণভাবে যেকোনো সূচকের জন্য সত্য হয়।
সूত্র ১০। $a>0, b>0$ এবং $r, s \in Q$ হলে
(क) $a^{r} \cdot a^{s}=a^{r+s}$
(च) $\frac{a^{r}}{a^{s}}=a^{r-s}$
(গ) $\left(a^{r}\right)^{s}=a^{r s}$
(घ) $(a b)=a^{r} b^{r}$
(ङ) $\left(\frac{a}{b}\right)^{r}=\frac{a^{r}}{b^{r}}$
(ক) ও (घ) এর পুনःপুন প্রয়োেের মাধ্যমে দেখা যায় যে,
অनूসিদ্ধাनড़़ (১) $a>0$ এবং $r_{1}, r_{2} \ldots \ldots r_{k} \in Q$ रলে, $a^{n^{n}} \cdot a^{r_{2}} \cdot a^{n_{3}} \ldots \ldots a^{n_{2}}=a^{n_{1}+r_{2}+r_{3}+\ldots \ldots+n_{n}}$
(২) $a_{1}>0, a_{2}>0 \ldots . . ., a_{n}>0$ এবং $r \in Q$ হলে, $\left(a_{1} \cdot a_{2} \ldots \ldots . . . a_{n}\right)^{r}=a_{1}^{r} \cdot a_{2}^{r} \ldots \ldots . . . a_{n}^{r}$.

উদাহর্নণ १। দেখাও যে, $a^{\frac{m}{n}} \cdot a^{\frac{p}{q}}=a^{\frac{m}{n} \frac{p}{q}}$
যেখানে, $a>0 ; m, p \in Z ; n, q \in N, n>1, q>1$.

সমাধান : $\frac{m}{n}$ ও $\frac{p}{q}$ কে সমহর বিশিষ্ট ভগ্নাংশে পরিণত করে দেখা যায় যে, $a^{\frac{m}{n}} \cdot a^{\frac{p}{q}}=a^{\frac{m q}{n q}} \cdot a^{\frac{n p}{n q}}=\left(a^{\frac{1}{n q}}\right)^{m q}\left(a^{\frac{1}{n q}}\right)^{n p} \quad$ [সংজ্ঞा ৬ ব্যবহার করে]

$$
\begin{aligned}
& =\left(a^{\frac{1}{n q}}\right)^{m q+n p} \text { [সूত্র ৬] } \\
& =a^{\frac{m q+n p}{n q}} \text { [সংজ্ঞা ৬] } \\
& =a^{\frac{m q}{n q}+\frac{n p}{n q}} \\
& =a^{\frac{m}{n}+\frac{p}{q}}
\end{aligned}
$$

কয়েকটি প্রয়োজনীয় তথ্য :

(i) यमि $a^{x}=1$ হয়, যেখানে $a>0$ এবং $a \neq 1$ তাহলে $x=0$
(ii) यদি $a^{x}=1$ হয়, যেখানে $a>0$ এবং $x \neq 0$ তাহলে $a=1$
(iii) यमि $a^{x}=a^{y}$ হয়, যেখানে $a>0$ এবং $a \neq 1$ তाহলে $x=y$
(iv) यদি $a^{x}=b^{x}$ হয়, যেখানে $\frac{a}{b}>0$ এবং এবং $x \neq 0$ তাহলে $a=b$

উদাহরণ ৮। সরল কর :

$$
\text { যদি } a^{x}=b, b^{y}=c \text { এবং } c^{z}=a \text { হয়, তবে দেখাও যে, } x y z=1 \text {. }
$$

সমধান : (i) প্রদত্ত শর্ত হতে, $b=a^{x}, c=b^{y}$ এবং $a=c^{z}$

$$
\begin{aligned}
& \text { এvन, } b=a^{x}=\left(c^{z}\right)^{x}=c^{z x}=\left(b^{y}\right)^{z x}=b^{x y} \\
& \Rightarrow b=b^{x y z} \Rightarrow b^{1}=b^{x y z} \\
& \therefore x y z=1 . \text { (প্রমাণिত)। }
\end{aligned}
$$

উদাহরণ ৯ । যमि $a^{b}=b^{a}$ হয়, তবে দেখাও যে, $\left(\frac{a}{b}\right)^{\frac{a}{b}}=a^{\frac{a}{b}-1}$ এবং এ থেকে প্রমাণ কর যে, $a=2 b$ रলে, $b=2$

সমাধান : দেওয়া আছে $a^{b}=b^{a}$

$$
\therefore b=\left(a^{b}\right)^{\frac{1}{a}}=a^{\frac{b}{a}}
$$

$$
\text { বाমপক }=\left(\frac{a}{b}\right)^{\frac{a}{b}}=\left(\frac{a}{a^{\frac{b}{a}}}\right)^{\frac{a}{b}}=\left(a^{1} \cdot a^{-\frac{b}{a}}\right)^{\frac{a}{b}}
$$

$$
=a^{\frac{a}{b}} \cdot a^{-1}=a^{\frac{a}{b}-1} \text { ডानপक (প্রমাণिত)। }
$$

পুনরায়, $a=2 b$ হলে

$$
\begin{aligned}
& \left(\frac{2 b}{b}\right)^{\frac{2 b}{b}}=(2 b)^{\frac{2 b}{b}-1} \Rightarrow(2)^{2}=(2 b)^{2-1} \\
& \Rightarrow 4=2 b \quad \therefore \quad b=2 \text { (প্রমাণिত)। }
\end{aligned}
$$

উদাহর্রণ ১০। यमि $x^{x \sqrt{x}}=(x \sqrt{x})^{x}$ হয় তবে x এর মান নির্ণয় কর।
সমাধান : দেওয়া আছে $x^{x \sqrt{x}}=(x \sqrt{x})^{x}$

$$
\begin{aligned}
\Rightarrow\left(x^{x}\right)^{\sqrt{x}} & =\left(x \cdot x^{\frac{1}{2}}\right)^{x}=\left(x^{1+\frac{1}{2}}\right)^{x} \\
& =\left(x^{\frac{3}{2}}\right)^{x}=\left(x^{x}\right)^{\frac{3}{2}}
\end{aligned}
$$

$\therefore\left(x^{x}\right)^{\sqrt{x}}=\left(x^{x}\right)^{\frac{3}{2}}$
$\Rightarrow \sqrt{x}=\frac{3}{2}$ $\therefore \Rightarrow x=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$.

উদাহর্八ণ ১১। যদি $a^{x}=b^{y}=c^{z}$ এবং $b^{2}=a c$ হয়, তবে প্রমাণ কর যে, $\frac{1}{x}+\frac{1}{z}=\frac{2}{y}$
সমাধান : যেহেতু $a^{x}=b^{y}$
বा, $a=b^{\frac{y}{x}}$
আবার, $c^{z}=b^{y} \quad \therefore c=b^{\frac{y}{z}}$
এথन $b^{2}=a c$
$\therefore b^{2}=b^{\frac{y}{x}} \cdot b^{\frac{y}{z}}=b^{\frac{y_{1}}{x} \frac{y}{z}}$
$\Rightarrow 2=\frac{y}{x}+\frac{y}{z} \Rightarrow \frac{1}{x}+\frac{1}{z}=\frac{2}{y}$ (প্রামণিত)।
উদাহর্রণ ১২। প্রমাণ কর যে, $\left(\frac{x^{b}}{x^{c}}\right)^{b+c} \times\left(\frac{x^{c}}{x^{a}}\right)^{c+a} \times\left(\frac{x^{a}}{x^{b}}\right)^{a+b}=1$
সমাধাन : বाমপक्ष $=\left(\frac{x^{b}}{x^{c}}\right)^{b+c} \times\left(\frac{x^{c}}{x^{a}}\right)^{c+a} \times\left(\frac{x^{a}}{x^{b}}\right)^{a+b}$

$$
\begin{aligned}
& =\left(x^{b-c}\right)^{b+c} \times\left(x^{c-a}\right)^{c+a} \times\left(x^{a-b}\right)^{a+b} \\
& =x^{b^{2}-c^{2}} \times x^{c^{2}-a^{2}} \times x^{a^{2}-b^{2}} \\
& =x^{b^{2}-c^{2}+c^{2}-a^{2}+a^{2}-b^{2}} \\
& =x^{0} \\
& =1=\text { ডानপक्ष। }
\end{aligned}
$$

উদাহর্রণ ১৩। যদি $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}$ এবং $a b c=1$ হয়, তবে দেখাও যে, $x+y+z=0$
সমাধান : ধরি, $a^{\frac{1}{x}}=b^{\frac{1}{y}}=c^{\frac{1}{z}}=k$.
তাহলে পাই, $a=k^{x}, b=k^{y}, c=k^{z}$

$$
\therefore a b c=k^{x} k^{y} k^{z}=k^{x+y+z}
$$

দেওয়া আছে, $a b c=1$

$$
\begin{aligned}
& \therefore k^{x+y+z}=k^{0} \\
& \therefore \quad x+y+z=0
\end{aligned}
$$

উদাহরণ ১8 । সরল কর : $\frac{1}{1+a^{y-z}+a^{y-x}}+\frac{1}{1+z^{z-x}+a^{z-y}}+\frac{1}{1+a^{x-y}+a^{x-z}}$
এখानে, $\frac{1}{1+a^{y-z}+a^{y-x}}=\frac{a^{-y}}{a^{-y}\left(1+a^{y-z}+a^{y-x}\right)}=\frac{a^{-y}}{a^{-y}+a^{-z}+a^{-x}}$ একইভাবে, $\frac{1}{1+z^{z-x}+a^{z-y}}=\frac{a^{-z}}{a^{-z}\left(1+a^{z-x}+a^{z-y}\right)}=\frac{a^{-z}}{a^{-z}+a^{-x}+a^{-y}}$

$$
\text { এবং } \frac{1}{1+a^{x-y}+a^{x-z}}=\frac{a^{-x}}{a^{-x}+a^{-y}+a^{-z}}
$$

সুতরাং প্রদত্ত রাশি $\frac{1}{1+a^{y-z}+a^{y-x}}+\frac{1}{1+z^{z-x}+a^{z-y}}+\frac{1}{1+a^{x-y}+a^{x-z}}$

$$
\begin{aligned}
& =\frac{a^{-y}}{a^{-y}+a^{-z}+a^{-x}}+\frac{a^{-z}}{a^{-z}+a^{-x}+a^{-y}}+\frac{a^{-x}}{a^{-x}+a^{-y}+a^{-z}} \\
& =\frac{a^{-x}+a^{-y}+a^{-z}}{a^{-x}+a^{-y}+a^{-z}}=1
\end{aligned}
$$

উদাহর্নণ ১৫। यদি $a=2+2^{\frac{2}{3}}+2^{\frac{1}{3}}$ হয়, তবে দেখাও যে, $a^{3}-6 a^{2}+6 a-2=0$.
সমাধান : দেওয়া আছে, $a=2+2^{\frac{2}{3}}+2^{\frac{1}{3}}$

$$
\therefore a-2=2^{\frac{2}{3}}+2^{\frac{1}{3}}
$$

বा, $(a-2)^{3}=\left(2^{\frac{2}{3}}+2^{\frac{1}{3}}\right)^{3}$

$$
\begin{aligned}
& =2^{2}+2+3 \cdot 2^{\frac{2}{3}} \cdot 2^{\frac{1}{3}}\left(2^{\frac{2}{3}}+2^{\frac{1}{3}}\right) \\
& =6+6(a-2)\left[\because 2^{\frac{2}{3}}+2^{\frac{1}{3}}=a-2\right]
\end{aligned}
$$

বा, $a^{3}-3 a^{2} 2+3 a \cdot 2^{2}-2^{3}=6+6 a-12$
বा, $a^{3}-6 a^{2}+12 a-8=6+6 a-12$
বा, $a^{3}-6 a^{2}+6 a-2=0$
উদাহর্রণ ১৬। সমাধান কর : $4^{x}-3 \cdot 2^{x+2} \cdot+2^{5}=0$
সমাধাन : $4^{x}-3 \cdot 2^{x+2}+2^{5}=0$

$$
\begin{aligned}
& \Rightarrow\left(2^{2}\right)^{x}-3 \cdot 2^{x} \cdot 2^{2}+2^{5}=0 \\
& \Rightarrow\left(2^{x}\right)^{2}-12 \cdot 2^{x}+32=0 \\
& \left.\Rightarrow y^{2}-12 y+32=0 \quad \text { [মनে करि } 2^{x}=y\right] \\
& \Rightarrow y^{2}-4 y-8 y+32=0 \\
& \Rightarrow y(y-4)-8(y-4)=0 \\
& \Rightarrow(y-4)(y-8)=0
\end{aligned}
$$

$\therefore y-4=0$
or $\quad y-8=0$

$$
\begin{array}{ll}
& \Rightarrow 2^{x}-4=0 \quad\left[\because 2^{x}=\mathrm{y}\right] \\
& \Rightarrow 2^{x}=4=2^{2} \\
\therefore & x=2
\end{array} \quad \Rightarrow 2^{x}-8=0 \quad\left[\because 2^{x}=y\right]
$$

\therefore निर्ণেয় সমাধান $x=2,3$

কাজ :

১। মান নির্ণয় কর :
(i) $\frac{5^{n+2}+35 \times 5^{n-1}}{4 \times 5^{n}}$
(ii) $\frac{3^{4} \cdot 3^{8}}{3^{14}}$

र। দেখাও যে, $\left(\frac{p^{a}}{p^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{p^{b}}{p^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{p^{c}}{p^{a}}\right)^{c^{2}+c a+a^{2}}=1$
৩। যमि $a=x y^{p-1}, b=x y^{q-1}$ এবং $c=x y^{r-1}$ হয়, তবে দেখাও যে, $a^{q-r} b^{r-p} c^{p-q}=1$
8 । সমাধাन কর : (i) $4^{x}-3^{x-\frac{1}{2}}=3^{x+\frac{1}{2}}-2^{2 x-1}$.
(ii) $9^{2 x}=3^{x+1}$
(iii) $2^{x+3}+2^{x+1}=320$

৫। সরল কর : (i) $\sqrt[12]{\left(a^{8}\right) \sqrt{\left(a^{6}\right) \sqrt{a^{4}}}}$.
(ii) $\left[1-1\left\{1-\left(1-x^{3}\right)^{-1}\right\}^{-1}\right]^{-1}$.

৬। যদি $\sqrt[x]{a}=\sqrt[y]{b}=\sqrt[z]{c}$ এবং $a b c=1$ হয়, তবে প্রমাণ কর $x+y+z=0$.
१। यদি $a^{m} \cdot a^{n}=\left(a^{m}\right)^{n}$ হয়, তবে প্রমাণ কর যে, $m(n-2)+n(m-2)=0$.

অনুশীলনী ৯.১

১। প্রমাণ কর যে, $\left(a^{\frac{m}{n}}\right)^{p}=a^{\frac{m p}{n}}$ যেখানে $m, p \in Z$ এবং $n \in N$.
২। প্রমাণ কর যে, $\left(a^{\frac{1}{m}}\right)^{\frac{1}{n}}=a^{\frac{1}{m n}}$ যেখানে $m, n \in Z$
৩। প্রমাণ কর যে, $(a b)^{\frac{m}{n}}=a^{\frac{m}{n}} b^{\frac{m}{n}}$, যেখানে $m \in Z, n \in N$
8। দেখাও যে, (ক) $\left(a^{\frac{1}{3}}-b^{\frac{1}{3}}\right)\left(a^{\frac{2}{3}}+a^{\frac{1}{3}} b^{\frac{1}{3}}+b^{\frac{2}{3}}\right)=a-b$
(च) $\frac{a^{3}+a^{-3}+1}{a^{\frac{3}{2}}+a^{\frac{-3}{2}}+1}=\left(a^{\frac{3}{2}}+a^{\frac{-3}{2}}-1\right)$

৫। সরল কর:
(क) $\left\{\left(x^{\frac{1}{a}}\right)^{\frac{a^{2}-b^{2}}{a-b}}\right\}^{\frac{a}{a+b}} \quad$ (थ) $\frac{a^{\frac{3}{2}}+a b}{a b-b^{3}}-\frac{\sqrt{a}}{\sqrt{a}-b}$
(গ) $\frac{\left(\frac{a+b}{b}\right)^{\frac{a}{a-b}} \times\left(\frac{a-b}{a}\right)^{\frac{a}{a-b}}}{\left(\frac{a+b}{b}\right)^{\frac{b}{a-b}} \times\left(\frac{a-b}{a}\right)^{\frac{b}{a-b}}}$
(घ) $\frac{1}{1+a^{-m} b^{n}+a^{-m} c^{p}}+\frac{1}{1+b^{-n} c^{p}+b^{-n} a^{m}}+\frac{1}{1+c^{-p} a^{m}+c^{-p} b^{n}}$
(ङ) $\sqrt[b o]{\frac{x^{\frac{b}{c}}}{x^{\frac{c}{b}}}} \times \sqrt[c a]{\frac{x^{\frac{c}{a}}}{x^{\frac{a}{c}}}} \times \sqrt[a b]{\frac{x^{\frac{a}{b}}}{x^{\frac{b}{a}}}}$
(Б) $\frac{\left(a^{2}-b^{2}\right)^{a}\left(a-b^{-1}\right)^{b-a}}{\left(b^{2}-a^{-2}\right)^{b}\left(b+a^{-1}\right)^{a-b}}$

৬। দেখাও যে,
(ক) यদि $x=a^{q+r} b^{p}, y={ }^{r+p} b^{q}, z=a^{p+q} b^{r}$ হয়, उবে $x^{q-r} \cdot y^{r-p} \cdot z^{p-q}=1$.
(খ) यमि $a^{p}=b, b^{q}=c$ এবং $c^{r}=a$ হয়, তবে $p q r=1$.
(গ) यদি $a^{x}=p, a^{y}=q$ এবং $a^{2}=\left(p^{y} q^{x}\right)^{z}$ হয়, তবে $x y z=1$.
१। (ক) यमि $x \sqrt[3]{a}+y \sqrt[3]{b}+z \sqrt[3]{c}=0$ এবং $a^{2}=b c$ হয়, তবে দেখাও যে, $a x^{3}+b y^{3}+c z^{3}=3 a x y z$
(খ) यमि $x=(a+b)^{\frac{1}{3}}+(a-b)^{\frac{1}{3}}$ এবং $a^{2}-b^{2}=c^{3}$ হয়, তবে দেখাও যে, $x^{3}-3 c x-2 a=0$
(গ) यদি $a=2^{\frac{1}{3}}+2^{-\frac{1}{3}}$ হয়, তবে দেখাও যে, $2 a^{3}-6 a=5$
(ঘ) यদি $a^{2}+2=3^{\frac{1}{3}}+3^{-\frac{2}{3}}$ এবং $a \geq 0$ হয়, তবে দেখাও যে, $a^{3}+9 a=8$
(ঙ) যদি $a^{2}=b^{3}$ হয়, তবে দেখাও যে, $\left(\frac{a}{b}\right)^{\frac{3}{2}}+\left(\frac{b}{a}\right)^{\frac{2}{3}}=a^{\frac{1}{2}}+b^{-\frac{1}{3}}$
(চ) यमि $b=1+3^{\frac{2}{3}}+3^{-\frac{1}{3}}$ इয়, তবে দেখাও যে, $b^{3}-3 b^{2}-6 b-4=0$
(ছ) यদি $a+b+c=0$ হয়, তবে দেখাও যে,

$$
\frac{1}{x^{b}+x^{-c}+1}+\frac{1}{x^{c}+x^{-a}+1}+\frac{1}{x^{a}+x^{-b}+1}=1 .
$$

৮। (ক) यদি $a^{x}=b, b^{y}=c$ এবং $c^{z}=1$ হয়, তবে $x y z=$ কত ?
(খ) यদি $x^{a}=y^{b}=z^{c}$ এবং $x y z=1$ হয়, তবে $a b+b c+c a=$ কত ?
(গ) यमि $9^{x}=(27)^{y}$ হয়, তा হलে $\frac{x}{y}$ এর মান কত ?
৯। সমাধান কর :
(ক) $3^{2 x+2}+27^{x+1}=36$
(খ) $5^{x}+3^{y}=8$
$5^{x-1}+3^{y-1}=2$
(Я) $4^{3 y-2}=16^{x+y}$
$3^{x+2 y}=9^{2 x+1}$
(घ) $2^{2 x+1} \cdot 2^{3 y+1}=8$
$2^{x+2} \cdot 2^{y+2}=16$

৯•৬ লগারিদম (Logarithm)

Logos এবং arithmas নামক দুটি গ্রীক শব্দ হতে লগারিম শব্দটির উৎপত্তি। Logos অর্থ আলোচনা এবং arithmas অর্থ সংখ্যা অর্থাৎ, বিশেষ সংখ্যা নিয়ে আলোচনা।

সংজ্ঞা : यদি $a^{x}=b$ হয়, যেখানে $a>0$ এবং $a \neq 1$, তবে x কে বলা হয় b এর a ভিত্তিক লগারিদম, অর্থাৎ, $x=\log _{a} b$
অতএব, $a^{x}=b \Rightarrow x=\log _{a} b$
বিপরীতক্রুম, যদি $x=\log _{a} b \Rightarrow a^{x}=b$ হবে।
এক্ষেত্রে b সংখ্যাটিকে ভিত্তি a এর সাপেক্ষে x এর প্রতিলগ (anti-logarithm) বলে এবং আমরা লিখি $b=$ anti $\log _{a} x$

यमि $\log a=n$ হয়, তবে a কে n এর প্রতিলগ বলা হয় অর্থাৎ, $\log a=n$ হলে $a=a n t i \log n$.

উদাহরণ ১। anti $\log 2 \cdot 82679=674.1042668$
anti $\log (9.82672-10)=0.671$
এবং anti $\log (6 \cdot 74429-10)=0 \cdot 000555$
দ্রষ্টব্য : বৈজ্ঞানিক ক্যালকুলেটর ব্যবহার করে $\log a$ এর আসন্न মান নির্ণয় করা যায় (এ সম্পর্কে মাধ্যমিক বীজগণিতে বিস্তারিত বর্ণনা দেওয়া আছে)।
সংজ্ঞানুসারে, আমরা পাই,
$\log _{2} 64=6$ যেহেতু $2^{6}=64$ এবং $\log _{8} 64=2$ যেহেতু $8^{2}=64$
সুতরাং, একই সংখ্যার লগারিদম ভিন্ন ভিন্ন ভিত্তির প্রেক্ষিতে ভিন্ন হতে পারে। ধনাত্যক কিন্ভু এককের সমান নয় এমন যেকোন্নো সংথ্যাকে ভিত্তি ধরে একই সংখ্যার ভিন্ন ভিন্ন লগারিদম নির্ণয় করা যায়। যেকোন্নে ধনাত্যক সংখ্যাকে লগারিদমের ভিত্তি হিসাবে গণ্য করা হয়। কোনো ঋণাত্মক সংখ্যার লগারিদম নির্ণয় করা যায় না।

Note: $a>0$ ও $a>1$ এবং $b \neq 0$ হলে b এর অনন্য a ভিত্তিক লগারিদমকে $\log _{a} b$ দ্বারা সূচিত করা হয়। সুতরাং (ক) $\log _{a} b=x$ यमि ও কেবল यमि $a^{x}=b$ হয়। (ক) থেকে দেখা যায় যে,
(ข) $\log _{a}\left(a^{x}\right)=x$
(গ) $a^{\log _{a} b}=b$

উদাহর্ন ১। (১) $4^{2}=16 \Rightarrow \log _{4} 16=2$
(২) $5^{-2}=\frac{1}{5^{2}}=\frac{1}{25} \Rightarrow \log _{5}\left(\frac{1}{25}\right)=-2$
(৩) $10^{3}=1000 \Rightarrow \log _{10}(1000)=3$
(8) $7^{\log _{7} 9}\left[\therefore a^{\log _{a} b}=b\right]$
(৫) $18=\log _{2} 2^{18} \quad\left[\because \log _{a} a^{x}=x\right]$

৯•৭ লগারিদমের সূত্রাবলী : (মাধ্যমিক বীজগণিতে প্রমাণ দেওয়া হয়েছে বিধায় এখানে তধু সূত্রখুো দেখানো হলো।) ১. $\log _{a} a=1$ এবং $\log _{a} 1=0$
२. $\log _{a}(M \times N)=\log _{a} M+\log _{a} N$

ง. $\log _{a}\left(\frac{M}{N}\right)=\log _{a} M-\log _{a} N$
8. $\log _{a}(M)^{N}=N \log _{a} M$
৫. $\log _{a} M=\log _{b} M \times \log _{a} b$

উদাহরণণ ২। $\log _{2} 5+\log _{2} 7+\log _{2} 3=\log _{2}(5.7 .3)=\log _{2} 105$
উদাহর্রণ ৩। $\log _{3} 20-\log _{3} 5=\log _{3} \frac{20}{5}=\log _{3} 4$

উদাহর্রণ 8। $\log _{5} 64=\log _{5} 2^{6}=6 \log _{5} 2$
Note: (i) यमि $x>0, y>0$ এবং $a \neq 1$ তখन $x=y$
যদি এবং কেবল যদি $\log _{a} x=\log _{a} y$
(ii) यमि $a>1$ এবং $x>1$ হয় তবে $\log _{a} x>0$
(iii) যদি $0<a<1$ এবং $0<x<1$ হয়, তবে $\log _{a} x>0$
(iv) यमि $a>1$ এবং $0<x<1$ হয়, তবে $\log _{a} x<0$

উদাহর্গণ ৫। x এর মান নির্ণয় কর যখন

(i) $\log _{\sqrt{8}} x=3 \frac{1}{3}$
(ii) यमि $\log _{10}\left[98+\sqrt{x^{2}-12 x+36}\right]=2$

সমাধান : (i) যেহেতু $\log _{\sqrt{8}} x=3 \frac{1}{3}=\frac{10}{3}$

$$
\begin{aligned}
& \Rightarrow x=(\sqrt{8})^{\frac{10}{3}}=\left(\sqrt{2^{3}}\right)^{\frac{10}{3}} \\
& \Rightarrow x=\left(2^{\frac{3}{2}}\right)^{\frac{10}{3}}=2^{\frac{3}{2} \cdot \frac{10}{3}}=2^{5}=32
\end{aligned}
$$

$$
\therefore \quad x=32
$$

(ii) যেহেতু $\log _{10}\left[98+\sqrt{x^{2}-12 x+36}\right]=2$

$$
\begin{aligned}
& \Rightarrow 98+\sqrt{x^{2}-12 x+36}=10^{2}=100 \\
& \Rightarrow \sqrt{x^{2}-12 x+36}=2 \\
& \Rightarrow x^{2}-12 x+36=4
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow(x-4)(x-8)=0 \\
& \therefore x=4 \quad \text { বा } x=8 .
\end{aligned}
$$

উদাহর্রণ ৬। দেখাও যে, $a^{\log _{k} b-\log _{k} c} \times b^{\log _{k} c-\log _{k} a} \times c^{\log _{k} a-\log _{k} b}=1$.
সমাধান : ধরি, $P=a^{\log _{k} b-\log _{k} c} \times b^{\log _{k} c-\log _{k} a} \times c^{\log _{k} a-\log _{k} b}$
তाহলে, $\log _{k} p=\left(\log _{k} b-\log _{k} c\right) \log _{k} a+\left(\log _{k} c-\log _{k} a\right) \log _{k} b+\left(\log _{k} a-\log _{k} b\right) \log _{k} c$.

$$
\begin{aligned}
& \Rightarrow \log _{k} p=0 \text { [সরল করে] } \\
& \Rightarrow P=k^{0}=1
\end{aligned}
$$

উদাহর্নণ १। দেখাও যে, $x^{\log _{a}} y=y^{\log _{a} x}$
প্রমাণ : ধরি $p=\log _{a} y, q=\log _{a} x$
সুতরাং $a^{p}=y, a^{q}=x$
$\therefore \quad\left(a^{p}\right)^{q}=y^{q} \Rightarrow y^{q}=a^{p q}$
এবং $\left(a^{q}\right)^{p}=x^{p} \Rightarrow x^{p}=a^{p q}$
$\therefore x^{p}=y^{q} \Rightarrow x \log _{a} y=y \operatorname{lob}_{a} x$

উদাহর্নণ ৮। দেখাও যে, $\log _{a} p \times \log _{p} q \times \log _{q} r \times \log _{r} b=\log _{a} b$
বামপক্ষ $=\log _{a} p \times \log _{p} q \times \log _{q} r \times \log _{r} b$
$=\left(\log _{p} q \times \log _{a} p\right) \times\left(\log _{r} b \times \log _{q} r\right)$
$=\log _{a} q \times \log _{q} b=\log _{a} b=$ ডानপक্ष।

উদাহর্ন ৯ । দেখাও যে, $\frac{1}{\log _{a}(a b c)}+\frac{1}{\log _{b}(a b c)}+\frac{1}{\log _{c}(a b c)}=1$
সমাধান : ধরি, $\log _{a}(a b c)=x, \log _{b}(a b c)=y, \log _{c}(a b c)=z$

সুতরাং, $a^{x}=a b c, b^{y}=a b c, c^{z}=a b c$
$\therefore a=(a b c)^{\frac{1}{x}}, b=(a b c)^{\frac{1}{y}}, c=(a b c)^{\frac{1}{z}}$
এখन, $(a b c)^{1}=a b c=(a b c)^{\frac{1}{x}}(a b c)^{\frac{1}{y}}(a b c)^{\frac{1}{z}}$

$$
=(a b c)^{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}}
$$

$\therefore \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$

जर्थएৎ, $\frac{1}{\log _{a}(a b c)}+\frac{1}{\log _{b}(a b c)}+\frac{1}{\log _{c}(a b c)}=1$

উদাহর্রণ ১০। यमि $P=\log _{a}(b c), q=\log _{b}(c a), r=\log _{c}(a b)$ इয় তবে দেখাও যে, $\frac{1}{p+1}+\frac{1}{q+1}+\frac{1}{r+1}=1$.
সমাধান : $1+P=1+\log _{a}(b c)=\log _{a} a+\log _{a}(b c)=\log _{a}(a b c)$
একইতাবে, $1+q=\log _{b}(a b c), 1+r=\log _{c}(a b c)$
উদাহর্ণ (৯) এ আমর্র প্রমাণ করেছি, $\frac{1}{\log _{a}(a b c)}+\frac{1}{\log _{b}(a b c)}+\frac{1}{\log _{c}(a b c)}=1$
$\therefore \frac{1}{p+1}+\frac{1}{q+1}+\frac{1}{r+1}=1$.

উमाइत्रণ ১১। यদि $\frac{\log a}{y-z}=\frac{\log b}{z-x}=\frac{\log c}{x-y}$ इয়, उবে দেथাও বে, $a^{x} b^{y} c^{z}=1$
সমাধান : ধরি, $\frac{\log a}{y-z}=\frac{\log b}{z-x}=\frac{\log c}{x-y}=k$
তাহলে, $\log a=k(y-z), \log b=k(z-x), \log c=k(x-y)$
$\therefore x \log a+y \log b+z \log c=k(x y-z x+y z-x y+z x-y z)=0$

$$
\begin{aligned}
& \text { বा, } \log _{a} x+\log _{a} y+\log _{a} z=0 \\
& \text { বा, } \log \left(a^{x} b^{y} c^{z}\right)=0 \\
& \text { বा, } \log \left(a^{x} b^{y} c^{z}\right)=\log 1 \quad[\log 1=0] \\
& \therefore a^{x} b^{y} c^{z}=1
\end{aligned}
$$

কাজ:

১। यमि $\frac{\log a}{b-c}=\frac{\log b}{c-a}=\frac{\log c}{a-b}$ তाহলে $a^{a} \cdot b^{b} \cdot c^{c}$ এর মাन निर्ণয় কর।
२। यमि a, b, c পরপর তিনটি ধনাত্যক অখও সংখ্যা হয়, তবে প্রমাণ কর বে, $\log (1+a c)=2 \log b$
৩। यमि $a^{2}+b^{2}=7 a b$ इड़, उबে দেथाও यে, $\log \left(\frac{a+b}{3}\right)=\frac{1}{2} \log (a b)=\frac{1}{2}(\log a+\log b)$
8। यमि $\log \left(\frac{x+y}{3}\right)=\frac{1}{2}(\log x+\log y)$ তবে দেथাও বে, $\frac{x}{y}+\frac{y}{x}=7$
৫। यमि $x=1+\log _{a} b c, y=1+\log _{b} c a$ এবং $z=1+\log _{c} a b$ रয়, তবে প্রমাণ কর যে, $x y z=x y+y z+z x$

৬। (ক) यमि $2 \log _{8} A=p, 2 \log _{2} 2 A=q$ এবং $q-p=4$ হয়, তবে A এর মান নির্ণয় কর।
(খ) यमि $\log x^{y}=6$ এবং $\log 14 x^{8 y}=3$ হয়, তবে x এর মান নির্ণয় কর।
१। লগ সারণি (মাধ্যমিক বীজগণিত পুস্তক দ্রষ্টব্য) ব্যবহার করে P এর আসন্ন মান নির্ণয় কর যেখানে,
(क) $P=(0.087721)^{4}$
(ข) $P=\sqrt[3]{30 \cdot 00618}$

৯•৭ সূচকীয়, লগারিদমীয় ও পরমমান ফাংশন

প্রথম অধ্যায়ে আমরা ফাংশন সম্পর্কে বিস্তারিত জেনেছি। এখানে সূচক, লগারিদম ও পরমমান ফাংশন সম্পর্কে আলোচনা করা হলো :
নিচের তিনটি টেবিলে বর্ণিত (x, y) ক্রমজোড়ের মানগুলো লক্ষ্য করি :
টেবিল ১ :

x	-2	-1	0	1	2	3
y	-4	-2	0	2	4	6

টেবিল ২:

x	0	1	2	3	4	5
y	1	3	9	27	81	243

টেবিল ৩ :

x	0	1	2	3	4	5	6	7	8	9	10
y	1	2	4	8	16	32	64	128	256	512	1024

টেবিল ১ এ বর্ণিত x এর ভিন্ন ভিন্ন মানের জন্য y এর মানগুলোর অন্তর সমান যা সরলরেখার ফাংশন বর্ণিত হয়েছে।

টেবিল ২ এ বর্ণিত (x, y) ক্রমজোড়ের মানণ্ডলো দ্বিঘাত ফাংশন বর্ণিত হয়েছে।
টেবিল ৩ এ বর্ণিত (x, y) ক্রুমাজোড়ের মানЖুলো $y=2^{x}$ দ্বারা বর্ণনা করা যায়। এখানে 2 একটি নির্দিষ ধনাত্যক বাস্তব সংখ্যা এবং x এর ভিন্न ভিন্न মানের জন্য y এর বর্ণিত মানখলো পাওয়া যায় যা নিম্নলিথিতভাবে সংজ্ঞায়িত করা যায়।

সূচক ফাংশন $f(x)=a^{x}$ সকল বাস্তব সংখ্যা x এর জন্য সংজ্ঞায়িত, যেখানে $a>0$ এবং $a \neq 1$
यেমन $y=2^{x}, 10^{x}, e^{x}$ ইত্যাদি সূচক ফাংশन।

কাब:

নিচের ছকে বর্ণিত সূচক ফাংশন লেখ :

১।	x	-2	-1	0	1	2	र।	x	-1	0	1	2	3
	y	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4		y	-3	0	3	6	9

$৩ ।$	x	1	2	3	4	5	8 ।	x	-3	-2	-1	0	1
	y	4	16	64	256	1024		y	0	1	2	3	4

৫।	x	-2	-1	0	1	2	৬।	x	1	2	3	4	5
	y	$\frac{1}{25}$	$\frac{1}{5}$	1	5	25		y	5	10	15	20	25

নিচের কোনটি সূচক ফাংশন নির্দেশ করে :
१। $y=-3^{x} \quad$ ৮। $y=3 x$
৯। $y=-2 x-3$
১০। $y=5-x$

$$
\text { ১১। } y=x^{2}+1 \quad \text { ১र। } y=3 x^{2}
$$

$f(x)=2^{x}$ এর লেখচিত্র অঙ্কন :
প্রদত্ত ফাংশনের লেখচিত্র অঙ্কনের জন্য x এবং y এর মানগুলোর তালিকা প্রস্তুত করি।

x	-3	-2	-1	0	1	2
y	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	1	2	4

ছক কাগজে মানণুলো স্থাপন করলে নিম্নর্রপ লেখচিত্র পাওয়া যায়-
এখানে ডোমেন $=(-\infty, \infty)$
রেঞ্র $=(0, \infty)$

চিত্র থেকে লক্ষ করলে দেখা যায়, যখন $x=0$ তখন $y=2^{0}=1$ কাজেই রেখাটি $(0,1)$ বিन्দুগামী
আবার, x এর ঋণাত্মক যেকোনো মানের জন্য y এর মান কোনো সময় 0 (ऊुন্যের) খুবই কাছাকাছি পৌছায় কিন্ভ শून्যে (0) হয় ना অर्थाৎ, $x \longrightarrow-\infty, y \longrightarrow 0^{+}$
একইভাবে, x এর যেকোনো ধনাত্মক মানের জন্য y এর মান ক্রমান্বয়ে ডানদিকে (উপরের) বৃদ্ধি পেতে থাকবে অর্থাৎ, $-\infty$ দিকে ধাবিত হয়। অর্থাৎ, $x \longrightarrow-\infty, y \longrightarrow \infty$
সুতরাং ডোমেন $(D)=(-\infty, \infty)$
এবং রেঞ্ঞ $(R)=(0, \infty)$
কাজ: লের্খচিত্র অঙ্কন কর যেখানে $-3 \leq x \leq 3$
১। $y=2^{-x}$
र। $y=4^{x}$
৩। $y=2^{\frac{x}{2}}$
8। $y=\left(\frac{3}{2}\right)^{x}$

যেহেতু সূচক ফাংশন একটি এক-এক ফাংশন।
সুতরাং, এর বিপরীত ফাংশন আছে।
$f(x)=y=a^{x}$ সূচकীয় <ূপ
$f^{-1}(y)=x=a^{y} \quad x$ এবং y পরিবর্তন করে
অর্থাৎ, x হলো y এর a ভিত্তিক লগারিদম।

সংজ্ঞা : লগারিদমিক ফাংশন $f(x)=\log _{a} x$ দ্বারা সংজ্ঞায়িত যেখানে $a>0$ এবং $a \neq 1$ $f(x)=\log _{3} x$, In $x, \log _{10} x$ ইত্যাদি লগারিদমিক ফাংশন। $y=\log _{2} x$ লেখচ্রিত্র অक्কন : যেহেতু $y=\log _{2} x$ হলো $y=2^{x}$ এর বিপরীত।
$y=x$ রেখা সাপেক্ষে সূচক ফাংশনের প্রতিফলন লগারিদমিক ফাংশন निর্ণয় করা হয়েছে যাহা $y=x$ রেখার সাপপক্ষে সদৃশ। এখन ডোমেন $R=(0, \infty)$
রেঞ্জ $(D)=(-\infty, \infty)$

কাজ: লেখচিত্র অঙ্কন কর এবং এদের বিপরীত ফাংশন নির্ণয়।
ว। $y=3 x+2$
र। $y=x^{2}+3$
ง। $y=x^{3}-1$
8। $y=\frac{4}{x}$
৫। $y=3 x$
৬। $y=\frac{2 x+1}{x-1}$
१। $y=2^{-x}$
b- । $y=4^{x}$

উদাহর্গণ ১। $f(x)=\frac{x}{|x|}$ ফাংxনটির ডোমেন ও রেఱ নির্ণয় কর।
সমাধান : এখানে $f(0)=\frac{0}{|0|}=\frac{0}{0}$ या অসংজ্ঞায়িত।
$\therefore x=0$ বিन्দूতে প্রদত্ত ফাংশনটি বিদ্যমান নয়।
শূন্য ব্যতীত x এর অन्य সকল বাস্তব মানের জন্য প্রদত্ত ফাংশনটি বিদ্যমান
\therefore ফাংশনের ডোমেন $D_{f}=R-\{0\}$
আবার, $f(x)=\frac{x}{|x|}=\left\{\begin{array}{l}\frac{x}{x} \text { यখन } x>0 \\ \frac{x}{-x} \text { যখन } x<0\end{array}\right.$

$$
=\left\{\begin{array}{l}
1 \text { যখन } x>0 \\
-1 \\
\text { যখन } x<0
\end{array}\right.
$$

\therefore প্রদত্ত ফাংশনের রেঞ্ต $R_{f}=\{-1,1\}$
উদাহরণ ২। $y=f(x)=\operatorname{In} \frac{a+x}{a-x}, a>0$ ফাংশনটির ডোমেন ও রেe নির্ণয় কর।
সমাধান : যেহেতু লগারিদম শ্ধুমাত্র ধনাত্মক বাস্তব সংখ্যার জন্য সংজ্ঞায়িত হয়।
$\therefore \frac{a+x}{a-x}>0$ यमि (i) $a+x>0$ এবং $a-x>0$ হয় অথবা (ii) $a+x<0$ এবং $a-x<0$ হয় ।

$$
\text { (i) } \begin{aligned}
& \Rightarrow x>-a \text { এবং } a>x \\
& \Rightarrow-a<x \text { এবং } x<a
\end{aligned}
$$

\therefore ডোমেন $=\{x:-a<x\} \cap\{x: x>a\}$

$$
=(-a, \infty) \cap(-\infty, a)=(-a, a)
$$

(ii) $\Rightarrow x<-a$ এবং $a<x$

$$
\Rightarrow x<-a \text { এবং } x>a
$$

\therefore ডোমেন $\{x: x<-a\} \cap\{x: x>a\}=\Phi$.
\therefore প্রদত্ত ফাংশনের ডোমেন
$\therefore D_{f}=(i)$ ও (ii) ক্ষেত্রে প্রাপ্ত ডোমেনের সংযোগ $(-a, a) \cup \Phi=(-a, a)$
রেঞ্র : $y=f(x)=\operatorname{In} \frac{a+x}{a-x} \Rightarrow e^{y}=\frac{a+x}{a-x}$

$$
\begin{aligned}
& \Rightarrow a+x=a e^{y}-x e^{y} \\
& \Rightarrow\left(1+a e^{y}\right) x=a\left(x e^{y}-1\right) \\
& \Rightarrow x=\frac{a\left(e^{y}-1\right)}{e^{y}+1}
\end{aligned}
$$

y এর সকল বাস্তুব মানের জন্য x এর মান বাস্তব হয়।
\therefore প্রদত্ত ফাংশনের রেঞ্র $R_{f}=R$

কাজ:

নিচের ফাংশনের ডোমেন ও রেপ্র নির্ণয় কর :
১। $y=\ln \frac{2+x}{2-x}$
र। $y=\ln \frac{3+x}{3-x}$
৩। $y=\ln \frac{4+x}{4-x}$
8। $y=\ln \frac{5+x}{5-x}$

পরমমান

মাধ্যমিক বীজগণিতে এ সম্পর্কিত বিস্তারিত বর্ণনা করা হয়েছে। এখানে ওধু পরমমানের সংজ্ঞা দেওয়া হলো :

যেকোনো বাস্তব সংখ্যা x এর মান শূন্য, ধনাত্যক বা ঋণাত্মক। কিন্ভু x এর পরমমান সবসময়ই শূন্য বা ধনাত্যক। x এর পরমমানকে $|x|$ দ্বারা প্রকাশ করা হয় এবং পরমমান নিম্নলিখিতভাবে সংজ্ঞায়িত করা হয়।

$$
|x|= \begin{cases}x & \text { যখন } x>0 \\ -x & \text { যখন } x<0\end{cases}
$$

यেমন : $|0|=0,|3|=3,|-3|=-(-3)=3$
পরমমান ফাংশন (Absosute Value Fuction)
यमि $x \in R$ হয়, তবে-

$$
y=f(x)=|x|=\left\{\begin{array}{l}
x \text { यथन } x \geq 0 \\
-x \text { यथन } x<0
\end{array}\right.
$$

কে পরমমান ফাংশন বলা হয়।
\therefore ডোমেন $=R$ এবং রেঞ্জ $R_{f}=[0, \infty]$
উদাহর্রণ ৩ । $f(x)=e^{\frac{|x|}{2}}$ যখন $-1<x<0$ এর ডোমেন ও রেঞ্木 নির্ণয় কর :
সমাধান : $f(x)=e^{\frac{-|x|}{2}},-1<x<0$
x এর মান যেহেতু নির্দিষ্ট -1 থেকে 0 এর মধ্যে
সুতরাং ডোমেন $D_{f}=(-1,0)$
আবার, $-1<x<0$ ব্যবধিতে $f(x) \in\left(e^{\frac{-1}{2}}, 1\right)$
সুতরাং রেঞ্জ $f=\left(e^{-\frac{1}{2}}, 1\right)$

৯•৮ ফাংশনের লেখচিত্র

কোনো সমতলে কোনো ফাংশনকে জ্যামিতিকভাবে উপস্থাপন করা গেলে ঐ ফাংশনকে চেনা যায়। ফাংশনের জ্যামিতিকভাবে এই উপস্থাপনকে ফাংশনের লেখচিত্র অঙ্কন করা হয়েছে বলা হয়। এখানে সূচক, লগারিদমিক ও পরমমান ফাংশনের লেখচিত্রের অঙ্কন পদ্ধতি নিয়ে আলোচনা করা হলো ।
(1) $y=f(x)=a^{x}$ এর লের্খচিত্র অঙ্কন কর :
(i) যখন $a>1$ এবং x যেকোনো বাস্তব সংখ্যা তখন ফাংশন $f(x)=a^{x}$ সর্বদা ধনাত্মক।

ধাপ ১ : x এর ধনাত্মক মানের জন্য x এর মান বৃদ্ধির সাতে সাথে $f(x)$ এর মান বৃদ্ধি পায়

ধাপ ২ : যখন $x=0$ তখन $y=a^{0}=1$, সুতরাং, $(0,1)$ রেখার উপর একটি বিন্দু ।

ধাপ ৩ : x এর ঋণাত্মক মানের জন্য x এর মান ক্রমাগত বৃদ্ধির সাতে সাথে $f(x)$ এর মান ক্রমাগত হাস পাবে। অর্থাৎ, $x \rightarrow \infty$ হলে $y \rightarrow 0$ হবে।

এখন চিত্রে $y=a^{x}, a>1$ ফাংশনের চিত্র ১ এ দেখানো হলো :

চিত্র : ১

এখানে $D_{f}=(-\infty, \infty)$ এবং $R_{f}=(0, \infty)$
(ii) যখন $o<a<1, x$ এর মান বাস্তব তখন $y=f(x)=a^{x}$ সর্বদাই ধনাত্মক।

ধাপ ১ : লক্ষ্য করি, মূল বিন্দুর ডানদিকে x এর মান ক্রমাগত বৃদ্ধি পেতে থাকলে অর্থাৎ, $x \rightarrow \infty$ হলে $y=0$ হবে।

ধাপ ২: যখন $x=0$ তখन $y=a^{0}=1$

সুতরাং $(0,1)$ বিन্দু রেখার উপর পড়ে।
ধাপ ৩ : যখন $a<1$ এবং x এর ঋণাত্মক মানের জন্য অর্থাৎ x এর মান মূল বিन্দুর বামদিকে ক্রমাগত বৃদ্ধির সাথে সাথে y এর মান ক্রমাগত বৃদ্ধি পাবে অর্থাৎ $y \rightarrow \infty$.
[โधরि $a=\frac{1}{2}<1, x=-2,-3, \ldots \ldots . n$, তখन $y=f(x)=a^{x}=\left(\frac{1}{2}\right)^{-2}$
$=2^{2}, y=2^{3}, \ldots \ldots ., y^{n}=z^{n}$. यमि $n \rightarrow \infty$ उথन $\left.y \rightarrow \infty\right]$
এখन $y=f(x)=a^{x}, 0<a<1$ এর লেখচিত্র চিত্র ২ দেখানো হলো :
এখানে $D_{f}=(-\infty, \infty)$ এবং $R_{f}=(0, \infty)$

কাজ:

নিচের ফাংশনণ্ডোর লেখচিত্র অঙ্কন কর এবং ডোমেন ও রেঞ্র নির্ণয় কর :
(i) $f(x)=2^{x}$
(ii) $f(x)=\left(\frac{1}{2}\right)^{x}$
(iii) $f(x)=e^{x}, \quad 2<e<3$.
(iv) $f(x)=e^{-x}, \quad 2<e<3 . \quad$ (v) $f(x)=3^{x}$
2. $f(x)=a^{x}$ এর লেখচিত্র অঙ্কন কর
(i) ধরি, $y=f(x)=\log _{a} x$ यथन $0<a<1$ ফाংশनটিকে লেখা যায় $x=a^{y}$ ধাপ ১ : যখন y এর ধনাত্মক মান ক্রমাগত বৃদ্ধি পেতে থাকে অর্থাৎ, $y \rightarrow \infty$ হয় তথন x এর মান শূন্যের দিকে ধাবিত হয় অর্থাৎ, $x \rightarrow 0$

ধাপ ২: যেহেতু $a^{o}=1$ কাজেই $y=\log _{a} 1=0$,
সুতরাং রেখাটি $(1,0)$ বিন্দুগামী।

ধাপ ৩ : y এর ঋণাত্যক মান অর্থাৎ, y এর মান মূলবিन্দুর নিচের দিকে ক্রমাগত বৃদ্ধি পেতে থাকে অর্থাৎ, $y \rightarrow-\infty$ হয় তাহলে x এর মান ক্রমাগত বৃদ্ধি পেতে থাকে অর্থাৎ, $x \rightarrow \infty$
এখন চিত্র ৩ এ $y=\log _{a} x, 0<a<1$ দেখানো হলো :
(2) $y=\log _{a} x, a>1$.

এখানে $D_{f}=(0, \infty)$ এবং $R_{f}=(-\infty, \infty)$
যখन $y=\log _{a} x, a>1$, তখन
ধাপ ১ : যখন $a>1, y$ এর সকল মানের জন্য x এর মান ধনাত্যক এবং y
 এর মানের ক্রমাগত বৃদ্ধির সাথে সাথে x এর মান বৃদ্ধিপ্রাপ্ত হয়। অর্থাৎ, $y \rightarrow \infty$ হলে $x \rightarrow \infty$ ধাপ ২: যেহেতু $a^{o}=1$ কাজেই $y=\log _{a} 1=0$

সুতরাং, রেখাটি $(1,0)$ বিन्দুগামী।
ধাপ ৩ : y এর ঋণাত্যক মানের জন্য y এর মান ক্রমাগত হ্হাস পেলে অর্থাৎ, $y=-\infty$ হলে x এর মান ক্রমাগত শূন্যের দিকে ধাবিত হয় অর্থাৎ, $x \rightarrow 0$

এখन $f(x)=\log a^{x}, a>1$ এর লেখচিত্র চিত্র 8 এ দেখানো হলো :
এখানে $D_{f}=(-\infty, \infty)$ এবং $R_{f}=(0, \infty)$
উদাহর্রণ ৩। $f(x)=\log _{10} x$ এর লের্খচিত্র অঙ্কন কর।
সমাধান : ধরি $y=f(x)=\log _{10} x$
যেহেতু $10^{\circ}=1$ কাজেই $y=\log _{10} 1=0$ সুতরাং, রেখাটি $(1,0)$ বিन্দুগামী।
যখन $x \rightarrow 0 \quad$ তখन $y \rightarrow-\infty$ ।
$\therefore y=\log _{10} x$ রেখাটি বৃদ্ধিপ্রাপ্ত। নিচে রেখাটির লের্খচিত্র অঙ্কন করা হলো।

এখানে $D_{f}=(0, \infty)$ এবং $R_{f}=(-\infty, \infty)$
উদাহরণ 8। $f(x)=\ln x$ এর লেখচিত্র অঙ্কন কর।
সমাধান : ধরি, $y=f(x)=\ln x$
যেহেতু $e^{o}=1$ কাজেই $y=\ln 1=0$. সুতরাং, রেখাটি $(1,0)$ বিন্দুগামী।
যখन $x \rightarrow 0$ তখन $y=\ln 0=-\infty$
$\therefore \quad y=\ln x$ রেখাটি বৃদ্ধিপ্রাপ্ত।
নিচে রেখাটির লেখচিত্র অঙ্কন করা হলো :
এখানে এখানে

$$
\begin{aligned}
& D_{f}=(0, \infty) \\
& R_{f}=(-\infty, \infty)
\end{aligned}
$$

$\therefore \quad f(x)=\ln x$ এর লেখচিত্র চিত্র ৬ এ দেখানো হলো :

কাজ:

১। টেবিলে উলেথিত x ও y এর মান নিয়ে $y=\log _{10} x$ এর লেখচিত্র অঙ্কন কর।

x	.5	1	2	3	4	5	10	12
y	-.3	0	0.3	0.5	.0	.7	1	1.0

২। $y=\log _{e} x$ এর লেখচিত্র অঙ্কনের জন্য ১এর ন্যায় x ও y এর মান নিয়ে টেবিল তৈরি কর এবং লেখচিত্র আঁক।

অনুশীলনী ৯-২

১। $\left\{\left(x^{\frac{1}{a}}\right)^{\frac{a^{2}-b^{2}}{a+b}}\right\}^{\frac{a}{a-b}}$ এর সরলমান কোনটি ?
(क) 0
$\begin{array}{ll}\text { (খ) } 1 & \text { (গ) } a\end{array}$
(घ) x

২। यमि $a, b, p>0$ এবং $a \neq 1, b \neq 1$ হয়, তবে
i. $\log _{a} P=\log _{b} P \times \log _{a} b$
ii. $\log _{a} \sqrt{a} \times \log _{b} \sqrt{b} \times \log _{c} \sqrt{c}$ এর মান 2
iii. $\quad x^{\log _{a} y}=y^{\log _{a} x}$

উপরেরে তথ্থের আলোকে নিচের কোনটি সঠিক ?
(क) i ఆ $i i$
(च) $i i$ ఆ iii
(গ) i ® iii
(घ) $i, i i$ ఆ iii

৩-৫ নং প্রশ্নের উত্তর দাও যथন $x, y, z \neq 0$ এবং $a^{x}=b^{y}=c^{z}$
৩। কোনটি সঠিক ?
(क) $a=b^{\frac{y}{z}}$
(ข) $c^{\frac{z}{y}}$
(গ) $a=c^{\frac{z}{x}}$
(घ) $a \neq \frac{b^{2}}{c}$

8। निচের কোনটি $a c$ এর সমান।
(क) $b^{\frac{y}{x}} \cdot b^{\frac{y}{z}}$
(च) $b^{\frac{y}{x}} \cdot b^{\frac{z}{y}}$
(ๆ) $b^{\frac{y}{x}+\frac{z}{y}}$
(घ) $b^{\frac{x}{y}+\frac{y}{z}}$
(1) $b^{2}=a c$ रলে নিচের কোনটি সঠিক ?
(क) $\frac{1}{x}+\frac{1}{z}=\frac{2}{y}$
(च) $\frac{1}{x}+\frac{1}{y}=\frac{2}{z}$
(গ) $\frac{1}{y}+\frac{1}{z}=\frac{2}{x}$
(घ) $\frac{1}{x}+\frac{1}{y}=\frac{z}{2}$

৬। দেখাও বে,
(क) $\log _{k}\left(\frac{a^{n}}{b^{n}}\right)+\log _{k}\left(\frac{b^{n}}{c^{n}}\right)+\log _{k}\left(\frac{c^{n}}{a^{n}}\right)=0$
(थ) $\log _{k}(a b) \log _{k}\left(\frac{a}{b}\right)+\log _{k}(b c) \log _{k}\left(\frac{b}{c}\right)+\log _{k}(c a) \log _{k}\left(\frac{c}{a}\right)=0$
(গ) $\log _{\sqrt{a}} b \times \log _{\sqrt{b}} c \times \log _{\sqrt{c}} a=8$
(घ) $\log _{a} \log _{a} \log _{a}\left(a^{a^{a}}\right)=b$
१। (क) यमि $\frac{\log _{k} a}{b-c}=\frac{\log _{k} b}{c-a}=\frac{\log _{k} c}{a-b}$ रख़, उबে দেখাও যে, $a^{a} b^{b} c^{c}=1$
(খ) यमि $\frac{\log _{k} a}{y-z}=\frac{\log _{k} b}{z-x}=\frac{\log _{k} c}{x-y}$ इয়, তবে দেখাও যে,
(د) $a^{y+z} b^{z+x} c^{x+y}=1$
(२) $a^{y^{2}+y z+z^{2}} \cdot b^{z^{2}+z x+x^{2}} \cdot c^{x^{2}+x y+y^{2}}=1$.
(গ) यमि $\frac{\log _{k}(1+x)}{\log _{k} x}=2$ হয়, তবে দেখাও যে, $x=\frac{1+\sqrt{5}}{2}$
(घ) দেथा ख यে, $\log _{k}=\frac{x-\sqrt{x^{2}-1}}{x+\sqrt{x^{2}-1}}=2 \log _{k}\left(x-\sqrt{x^{2}-1}\right)$
(ङ) यमि $a^{3-x} b^{5 x}=a^{5+x} b^{3 x}$ शয়, তবে দেখাও बে, $x \log _{k}\left(\frac{b}{a}\right)=\log _{k} a$
(Б) यमि $x y^{a-1}=P, x y^{b-1}=q, x y^{c-1}=r$ इख़,

তবে দেখাও যে, $(b-c) \log _{k} p+(c-a) \log _{k} q+(a-b) \log _{k} r=0$
(ছ) यদি $\frac{a b \log _{k}(a b)}{a+b}=\frac{b c \log _{k}(b c)}{b+c}=\frac{c a \log _{k}(c a)}{c+a}$ হয়, তবে দেখাও যে, $a^{a}=b^{b}=c^{c}$
(ब) यमि $\frac{x(y+z-x)}{\log _{k} x}=\frac{y(z+x-y)}{\log _{k} y}=\frac{z(x+y-z)}{\log _{k} z}$ इয়,
তবে দেখাও যে, $x^{y} y^{z}=y^{z} z^{y}=z^{x} x^{z}$
৮। 'লগ সারণি (মাধ্যমিক বীজগণিত দ্রষ্টব্য) ব্যবহার করে P এর আসন্ন মান নির্ণয় কর যেখানে,
(क) $P=2 \pi \sqrt{\frac{l}{g}}$ যেখানে $\pi \approx 3 \cdot 1416, g=981$ এবং $l=25 \cdot 5$
(থ) $P=10000 \times e^{005 t}$ যেখানে $e=1.718$ এবং $t=13.86$
৯। $\ln P \approx 2 \cdot 3026 \times \log P$ সূত্র ব্যবহার করে $\ln P$ এর আসন্ন মান নির্ণয় কর, যখন-
(क) $P=10000$
(ข) $P=.001 e^{2}$ (গ) $P=10^{100} \times \sqrt{e}$

১০। লেখচিত্র অঙ্কন কর :
(ক) $y=3^{x}$
(ข) $y=-3^{x}$
(গ) $y=3^{x+1}$
(घ) $y=-3^{x+1}$
(ङ) $y=3^{-x+1}$
(ס) $y=3^{x-1}$

১১। নিচের ফাংশনের বিপরীত ফাংশন লিখ এবং লেখচিত্র অঙ্কন করে ডোমেন ও রেঞ্র নির্ণয় কর।
(क) $y=1-2^{-x}$
(ข) $y=\log _{10} x$
(ケ) $y=x^{2}, \quad x>0$
১২। $f(x)=\ln (x-2)$ ফাংশनটির D_{f} ও R_{f} निর্ণয় কর :
১৩। $f(x)=\ln \frac{1-x}{1+x}$ ফাংশনটির ডোমেন এবং রেঞ্ต নির্ণয় কর।
১8। ডোমেন, রেঞ্ৰ উল্লেখসহ লেখচিত্র অঙ্কন কর।
(ক) $f(x)=|x|$ যখन $-5 \leq x \leq 5$
(খ) $f(x)=x+|x|$ যथन $-2 \leq x \leq 2$
(গ) $f(x)= \begin{cases}\frac{|x|}{x} \text { यখन } x \neq 0 \\ 0 & \text { यখन } x=0\end{cases}$
(घ) $f(x)=\frac{x}{|x|}$
(ঙ) $f(x)=\log \frac{5+x}{5-x},-5<x<5$

১৫। দে ওয়া আছে :
$2^{2 x} \cdot 2^{y-1}=64$
এবং $6 \mathrm{x} \cdot \frac{6^{y-2}}{3}=72$
ক. (i) ও (ii) কে x ও y চলকবিশিষ্ট সরল সমীকরণে পরিণত কর।
থ. সমীকরণণদ্বয় সমাধান করে Ж্ধ্ধতা যাচাই কর।
গ. x ও y মান यमि কোনো চতুর্ভুজের সন্নিহিত বাহুর দৈর্ঘ্য হয় যেখানে বাহুদ্বয়ের অন্তর্ভুক্ত কোণ 90° তবে চতুর্ভুজটি আয়ত না বর্গ উল্লেখ কর এবং এর ক্ষেত্রফল ও কর্ণের দৈর্ঘ্য নির্ণয় কর।

১৬। দে ওয়া আছে,

$$
\frac{\log (1+x)}{\log x}=2
$$

ক. প্রদত্ত সমীকরণটিকে x চলকসংবলিত একটি দ্বিঘাত সমীকরণে পরিণত কর।
থ. প্রাপ্ত সমীকরণটিকে সমাধান কর এবং দেখাও যে, x এর কেবল একটি বীজ সমীকরণটিকে সিদ্ধ করে।
গ. প্রমাণ কর যে, মূলদ্বয়ের প্রতিটির বর্গ তার স্বীয় মান অপেক্ষা 1 (এক) বেশি এবং তাদের লেখচিত্র পরস্পর সমান্তরাল।

১৭। দেওয়া আছে, $y=2^{x}$
ক. প্রদত্ত ফাংশনটির ডোমেন এবং রেঞ্ৰ নির্ণয় কর।
থ. ফাংশনটির লের্খচিত্র অঙ্কন কর এবং এর বৈশিষ্ট্যণ্ুলি লিখ।
গ. ফাংশনनটির বিপরীত ফাংশন নির্ণয় করে এটি এক-এক কিনা তা নির্ধারণ কর এবং বিপরীত ফাংশনটির লেখচিত্র আঁক।

